skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1397551
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Chemical Physics Letters
Additional Journal Information:
Journal Volume: 660; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-10-04 21:43:51; Journal ID: ISSN 0009-2614
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Jin, Bin Bin, Wang, Ye Feng, and Zeng, Jing Hui. Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode. Netherlands: N. p., 2016. Web. doi:10.1016/j.cplett.2016.08.009.
Jin, Bin Bin, Wang, Ye Feng, & Zeng, Jing Hui. Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode. Netherlands. doi:10.1016/j.cplett.2016.08.009.
Jin, Bin Bin, Wang, Ye Feng, and Zeng, Jing Hui. 2016. "Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode". Netherlands. doi:10.1016/j.cplett.2016.08.009.
@article{osti_1397551,
title = {Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode},
author = {Jin, Bin Bin and Wang, Ye Feng and Zeng, Jing Hui},
abstractNote = {},
doi = {10.1016/j.cplett.2016.08.009},
journal = {Chemical Physics Letters},
number = C,
volume = 660,
place = {Netherlands},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.cplett.2016.08.009

Save / Share:
  • This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymermore » blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs. - Graphical abstract: In this study, the g-C{sub 3}N{sub 4} was synthesized from low cost urea and it was used as a precursor to synthesize of g-C{sub 3}N{sub 4}/TiO{sub 2} composite. The pure and 2-APY incorporated PVDF-HFP/PEO electrolytes were fabricated by solution casting method. A remarkably enhanced PCE of 4.73% was observed for 2-APY incorporated PVDF-HFP/PEO electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} composite photoanode based DSSC. - Highlights: • 2-APY added PVDF-HFP/PEO electrolyte was prepared by solution casting method. • The g-C{sub 3}N{sub 4}/TiO{sub 2} composites were synthesized by wet-impregnation method. • DSSC with g-C{sub 3}N{sub 4}/TiO{sub 2} and 2-APY added electrolyte showed the efficiency of 4.73 %. • The g-C{sub 3}N{sub 4} and 2-APY can be a useful dopant to enhance the performance of DSSCs.« less
  • The optical and electronic properties of dye aggregates of p-methyl red on a TiO2 anatase (101) surface were modeled as a function of aggregation order (monomer to pentameric dye) via first principles calculations. A progressive red-shifting and intensity increase toward the visible region in UV/vis absorption spectra is observed from monomeric-to-tetrameric dyes, with each molecule in a given aggregate binding to one of the four possible TiO2 (101) adsorption sites. The pentamer exhibits a blue-shifted peak wave- length in the UV/vis absorption spectra and less absorption intensity in the visible region in comparison; a corresponding manifestation of H-aggregation occurs sincemore » one of these five molecules cannot occupy an adsorption site. This finding is consistent with experiment. Calculated density of states (DOS) and partial DOS spectra reveal similar dye…TiO2 nanocomposite conduction band characteristics but different valence band features. Associated molecular orbital distributions reveal dye-to-TiO2 interfacial charge transfer in all five differing aggregate orders; meanwhile, the level of intramolecular charge transfer in the dye becomes progressively localized around its azo- and electron-donating groups, up to the tetrameric dye/TiO2 species. Dye adsorption energies and dye coverage levels are calculated and compared with experiment. Overall, the findings of this case study serve to aid the molecular design of azo dyes towards better performing DSSC devices wherein they are incorporated. In addition, they provide a helpful example reference for understanding the effects of dye aggregation on the adsorbate…TiO2 interfacial optical and electronic properties.« less
  • Highlights: • A novel TiO{sub 2} double-layer composite film is successfully fabricated. • The TiO{sub 2}-HB overlayer exhibited intense scattering ability. • The P25 particles underlayer can enlarge the contact area and increase the contact points between TiO{sub 2}-HB and FTO glass. • TiO{sub 2}-DLL film cells have the maximum conversion efficiency. - Abstract: A TiO{sub 2} double-layer composite film consisting of hollow TiO{sub 2} boxes (HB-TiO{sub 2}) as overlayer and commercial-grade TiO{sub 2} nanoparticles (P25) as underlayer is designed as the photoelectrode of dye-sensitized solar cells (DSSCs). The hollow TiO{sub 2} box has been employed as light-scattering part tomore » increase the optical length in the film and enhance light-harvesting. It was found that the double-layer film cell with lower absorbed dye achieved the highest conversion efficiency and reach up to a maximum value of 6.4%, which is 226% higher than that of pure HB-TiO{sub 2} film cell (η = 1.96%) and 57.2% higher than that of pure P25 particles film cell under identical film thickness at a constant irradiation of 100 mW cm{sup −2}. The enhanced efficiency of double-layer film can be attributed to its light-scattering capability.« less
  • A new titanium dioxide (TiO{sub 2}) slurry formulation is herein reported for the fabrication of TiO{sub 2} photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO{sub 2} photoanode featured a highly uniform mesoporous structure with well-dispersed TiO{sub 2} nanoparticles. The energy conversion efficiency of the resulting TiO{sub 2} slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO{sub 2} slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO{sub 2} slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on themore » performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO{sub 2} photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO{sub 2} slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.« less
  • In this paper, we report the solar cell performance of titania (TiO2) film electrodes with various particle sizes. It was found that the TiO2 nanoparticle film with smaller particles ~ 10 nm in diameter resulted in a lower overall light conversion efficiency of ~ 1.4% with an open-circuit voltage of ~ 730 mV, a short-circuit current density of ~ 3.6 mA/cm2, and a fill factor of ~ 54%. Larger particles ~ 23 nm in diameter resulted in a higher efficiency ~ 5.2% with an open-circuit voltage of ~ 730 mV, a short-circuit current density of ~ 12.2 mA/cm2, and amore » fill factor of ~ 58%. Although it was anticipated that particles with smaller diameters would adsorb more dye due to its larger surface area, it was found that particles with larger diameters had better dye adsorption for increased electron-hole generation, resulting in higher short-circuit current density and overall light conversion efficiency. Larger particles were shown to have better dye adsorption, indicating that films consisting of larger particles had greater effective surface area for greater photon absorption and electron-hole generation.« less