skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Public Preferences on Options for Radioactive Waste Management in US.


Abstract not provided.

; ; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE), Fuel Cycle Technologies (NE-5)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the International High-Level Radioactive Waste Management Conference held April 9-14, 2017 in Charlotte, NC.
Country of Publication:
United States

Citation Formats

Rechard, Robert P., Bonano, Evaristo J., Jenkins-Smith, Hank C., Silva, Carol L., and Gupta, Kuhika. Public Preferences on Options for Radioactive Waste Management in US.. United States: N. p., 2016. Web.
Rechard, Robert P., Bonano, Evaristo J., Jenkins-Smith, Hank C., Silva, Carol L., & Gupta, Kuhika. Public Preferences on Options for Radioactive Waste Management in US.. United States.
Rechard, Robert P., Bonano, Evaristo J., Jenkins-Smith, Hank C., Silva, Carol L., and Gupta, Kuhika. 2016. "Public Preferences on Options for Radioactive Waste Management in US.". United States. doi:.
title = {Public Preferences on Options for Radioactive Waste Management in US.},
author = {Rechard, Robert P. and Bonano, Evaristo J. and Jenkins-Smith, Hank C. and Silva, Carol L. and Gupta, Kuhika},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less
  • Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social andmore » ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and Holistic assessments, coupled with an overarching deliberative approach. How this was managed and delivered to programme demonstrates how important effective integration of different issues, interests and world views can be achieved, and the paper looks forward to how the continued integration of both natural and social sciences is essential if public confidence is to be maintained through implementation stages. This paper will be particularly relevant to governments, waste owners and implementing bodies who are responsible for developing and implementing policy. (author)« less
  • An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked usingmore » weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium.« less
  • Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider allmore » aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.« less