skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix

Authors:
; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1396789
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Journal of Pharmaceutical Sciences
Additional Journal Information:
Journal Volume: 105; Journal Issue: 10; Related Information: CHORUS Timestamp: 2017-10-04 15:34:48; Journal ID: ISSN 0022-3549
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Citation Formats

Lin, Ho-Pi, Sun, Dajun, Zhang, Xinyuan, and Wen, Hong. Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix. United States: N. p., 2016. Web. doi:10.1016/j.xphs.2016.06.015.
Lin, Ho-Pi, Sun, Dajun, Zhang, Xinyuan, & Wen, Hong. Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix. United States. doi:10.1016/j.xphs.2016.06.015.
Lin, Ho-Pi, Sun, Dajun, Zhang, Xinyuan, and Wen, Hong. 2016. "Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix". United States. doi:10.1016/j.xphs.2016.06.015.
@article{osti_1396789,
title = {Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix},
author = {Lin, Ho-Pi and Sun, Dajun and Zhang, Xinyuan and Wen, Hong},
abstractNote = {},
doi = {10.1016/j.xphs.2016.06.015},
journal = {Journal of Pharmaceutical Sciences},
number = 10,
volume = 105,
place = {United States},
year = 2016,
month =
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.xphs.2016.06.015

Save / Share:
  • Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools for calculation of internal and target organ doses of parent compound and metabolites. PBPK models, coupled with in vivo inhalation gas-uptake data, can be useful to estimate total metabolism. Previously, such an approach was used to make predictions regarding the metabolism and to make subsequent inferences of DCM's mode of action for toxicity. However, current evidence warrants re-examination of this approach. The goal of thismore » work was to examine two different hypotheses for DCM metabolism in mice. One hypothesis describes two metabolic pathways: one involving cytochrome P450 2E1 (CYP2E1) and a second glutathione (GSH). The second metabolic hypothesis describes only one pathway mediated by CYP2E1 that includes multiple binding sites. The results of our analysis show that the in vivo gas-uptake data fit both hypotheses well and the traditional analysis of the chamber concentration data is not sufficient to distinguish between them. Gas-uptake data were re-analyzed by construction of a velocity plot as a function of increasing DCM initial concentration. The velocity (slope) analysis revealed that there are two substantially different phases in velocity, one rate for lower exposures and a different rate for higher exposures. The concept of a 'metabolic switch,' namely that due to conformational changes in the enzyme after one site is occupied - a different metabolic rate is seen - is also consistent with the experimental data. Our analyses raise questions concerning the importance of GSH metabolism for DCM. Recent research results also question the importance of this pathway in the toxicity of DCM. GSH-related DNA adducts were not formed after in vivo DCM exposure in mice and DCM-induced DNA damage has been detected in human lung cultures without GSH metabolism. In summary, a revised/updated metabolic hypothesis for DCM has been examined using in vivo inhalation data in mice combined with PBPK modeling that is consistent with up-to-date models of the active site for CYP2E1 and suggests that this pathway is the major metabolizing pathway for DCM metabolism.« less
  • Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled withmore » serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.« less
  • Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeksmore » 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.« less
  • Chemical risk assessment is a complex process that requires integration of various biological data from test species, ultimately producing a prediction of the expected outcome of anticipated human exposure. There are two aspects of this process in which pharmacokinetic (PK) modeling can play an important role: in dosimetry, the process of estimating target tissue dose in the test species, and in extrapolation, the process of generalizing beyond the test species to predict human target tissue dose for various ambient exposure conditions. Mechanistic information on the cancer process is crucial in selecting the appropriate measure of target tissue dose: i.e., ismore » it tissue exposure to parent chemical, tissue exposure to stable or reactive metabolite(s), occupancy of critical cellular receptors by parent or metabolite, or some measure of cytotoxicity with concomitant reparative hyperplasia (This is not intended to be an exhaustive list of the potential measures of tissue dose associated with cancer induction). With a presumed carcinogenic mechanism and its appropriate measure of tissue dose in mind, a pharmacokinetic model can then be developed to quantitate this measure of target tissue dose for various exposure conditions. Physiologically based pharmacokinetic (PB-PK) modeling is the preferred modeling strategy since it is more readily amenable to the interspecies extrapolation necessary to calculate human tissue dose. This essay focuses on the issues of what constitutes an appropriate measure of tissue dose and of how PB-PK models can be developed to estimate tissue dose for chemicals which cause cancer by differing mechanisms. It outlines preliminary attempts to include information on cytotoxicity into a quantitative risk assessment process.« less
  • A physiologically-based pharmacokinetic (PBPK) model for a mixture of toluene (TOL) and xylene (XYL), developed and validated in the rat, was used to predict the uptake and disposition kinetics of TOL/XYL mixture in humans. This was accomplished by substituting the rat physiological parameters and the blood:air partition coefficient with those of humans, scaling the maximal velocity for hepatic metabolism on the basis of body weight{sup 0.75}, and keeping all other model parameters species-invariant. The human TOL/XYL mixture PBPK model, developed based on the quantitative biochemical mechanism of interaction elucidated in the rat (i.e., competitive metabolic inhibition), simulated adequately the kineticsmore » of TOL and XYL during combined exposures in humans. The simulations with this PBPK model indicate that an eight hour co-exposure to concentrations that remain within the current threshold limit values of TOL (50 ppm) and XYL (100 ppm) would not result in significant pharmacokinetic interferences, thus implying that data on biological monitoring of worker exposure to these solvents would be unaffected during co-exposures. 17 refs., 5 figs., 2 tabs.« less