skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery

Abstract

The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) in an aprotic Li-O2 cell is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during discharge of a Li-O2 cell. According to DFT calculations, the formation of lithium oxalate as the reaction product is exothermic, and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li-O2 cell, and therefore LiBOB is probably not suitable to be used as the salt in Li-O2 cell electrolytes.

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Vehicle Technology; USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division
OSTI Identifier:
1396294
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Energy Technology
Additional Journal Information:
Journal Volume: 2; Journal Issue: 4; Journal ID: ISSN 2194-4288
Publisher:
Wiley
Country of Publication:
United States
Language:
English

Citation Formats

Lau, Kah Chun, Lu, Jun, Low, John, Peng, Du, Wu, Huiming, Albishri, Hassan M., Al-Hady, D. Abd, Curtiss, Larry A., and Amine, Khalil. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery. United States: N. p., 2014. Web. doi:10.1002/ente.201300164.
Lau, Kah Chun, Lu, Jun, Low, John, Peng, Du, Wu, Huiming, Albishri, Hassan M., Al-Hady, D. Abd, Curtiss, Larry A., & Amine, Khalil. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery. United States. doi:10.1002/ente.201300164.
Lau, Kah Chun, Lu, Jun, Low, John, Peng, Du, Wu, Huiming, Albishri, Hassan M., Al-Hady, D. Abd, Curtiss, Larry A., and Amine, Khalil. Thu . "Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery". United States. doi:10.1002/ente.201300164.
@article{osti_1396294,
title = {Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery},
author = {Lau, Kah Chun and Lu, Jun and Low, John and Peng, Du and Wu, Huiming and Albishri, Hassan M. and Al-Hady, D. Abd and Curtiss, Larry A. and Amine, Khalil},
abstractNote = {The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) in an aprotic Li-O2 cell is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during discharge of a Li-O2 cell. According to DFT calculations, the formation of lithium oxalate as the reaction product is exothermic, and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li-O2 cell, and therefore LiBOB is probably not suitable to be used as the salt in Li-O2 cell electrolytes.},
doi = {10.1002/ente.201300164},
journal = {Energy Technology},
issn = {2194-4288},
number = 4,
volume = 2,
place = {United States},
year = {2014},
month = {3}
}

Works referenced in this record:

Effects of Electrolyte Salts on the Performance of Li–O 2 Batteries
journal, February 2013

  • Nasybulin, Eduard; Xu, Wu; Engelhard, Mark H.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311114u

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications
journal, January 2008

  • Zhang, Lingzhi; Zhang, Zhengcheng; Harring, Scott
  • Journal of Materials Chemistry, Vol. 18, Issue 31
  • DOI: 10.1039/b806290k

Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes
journal, January 2010


Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

A critical review on lithium–air battery electrolytes
journal, January 2014

  • Balaish, Moran; Kraytsberg, Alexander; Ein-Eli, Yair
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 7
  • DOI: 10.1039/c3cp54165g

Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries
journal, January 2013

  • Du, Peng; Lu, Jun; Lau, Kah Chun
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 15
  • DOI: 10.1039/c3cp50500f

Review on Li–air batteries—Opportunities, limitations and perspective
journal, February 2011


In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries
journal, January 2013

  • Qin, Yan; Lu, Jun; Du, Peng
  • Energy & Environmental Science, Vol. 6, Issue 2, p. 519-531
  • DOI: 10.1039/c2ee23621d

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective
journal, April 2012

  • Shao, Yuyan; Park, Sehkyu; Xiao, Jie
  • ACS Catalysis, Vol. 2, Issue 5, p. 844-857
  • DOI: 10.1021/cs300036v

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries
journal, September 2010


Magnetism in Lithium-Oxygen Discharge Product
journal, May 2013


A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
journal, January 1996

  • Abraham, K. M.; Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
  • DOI: 10.1149/1.1836378

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Making Li-Air Batteries Rechargeable: Material Challenges
journal, May 2012

  • Shao, Yuyan; Ding, Fei; Xiao, Jie
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200688

Escaping free-energy minima
journal, September 2002

  • Laio, A.; Parrinello, M.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20
  • DOI: 10.1073/pnas.202427399

Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell
journal, January 2011

  • Hyoung Oh, Si; Yim, Taeeun; Pomerantseva, Ekaterina
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 12
  • DOI: 10.1149/2.003112esl

Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
journal, February 2011

  • Bryantsev, Vyacheslav S.; Blanco, Mario
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz1016526

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v