skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G

Abstract

The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1396146
Report Number(s):
LA-UR-17-26674
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; performance assessment

Citation Formats

Chu, Shaoping, Stauffer, Philip H., Birdsell, Kay Hanson, French, Sean B., and Veilleux, John Mark. Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G. United States: N. p., 2017. Web. doi:10.2172/1396146.
Chu, Shaoping, Stauffer, Philip H., Birdsell, Kay Hanson, French, Sean B., & Veilleux, John Mark. Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G. United States. doi:10.2172/1396146.
Chu, Shaoping, Stauffer, Philip H., Birdsell, Kay Hanson, French, Sean B., and Veilleux, John Mark. 2017. "Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G". United States. doi:10.2172/1396146. https://www.osti.gov/servlets/purl/1396146.
@article{osti_1396146,
title = {Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G},
author = {Chu, Shaoping and Stauffer, Philip H. and Birdsell, Kay Hanson and French, Sean B. and Veilleux, John Mark},
abstractNote = {The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.},
doi = {10.2172/1396146},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 9
}

Technical Report:

Save / Share:
  • The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate themore » movement of radionuclides through the environment, and project potential radiation doses to humans for several onsite and offsite exposure scenarios. The assessments are based on existing site and disposal facility data, and assumptions about future rates and methods of waste disposal.« less
  • At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan ismore » designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.« less
  • This Special Analysis (SA) addresses disposal of wastes containing a high concentration of I-129 in the Low Activity Waste (LAW) Vaults at the Savannah River Site E-Area Low-Level Waste Facility. These wastes were analyzed by computer modeling incorporating a laboratory-measured I-129 Kd. A Kd represents partitioning of a contaminant between solid particles (i.e., the waste) and liquid that can transport the contaminant. These wastes exhibited high Kds indicating a slow release rate that typically is manifested as low aquifer concentrations and high vault-inventory limits. This SA applies to ER and ETF wastes and any type of future waste that containsmore » a high concentration of I-129. This SA was prepared to meet the requirements of the U.S. Department of Energy Order 435.1 (DOE 1999). Because the Performance Assessment (PA, McDowell-Boyer, et al., 2000) analyzes generic wastes, this report focuses on wastes with a high I-129 concentration. Common information from the PA is not duplicate d in this report.« less
  • This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
  • The five major chemical processes, the Bismuth Phosphate process, the Uranium Recovery process, the Redox process, the Purex process, and the Waste Fractionization process have each contributed to give the total Hanford waste chemicals. Each of these processes is studied to determine the total estimated chemicals stored in underground waste tanks. The chemical contents are derived mainly from flowsheet compositions and recorded waste volumes sent to underground storage. The major components and amounts of Hanford waste are sodium hydroxide, 230 million gram-moles (20 million pounds), sodium nitrate, 1400 million gram-moles (270 million pounds), sodium nitrite, 220 million gram-moles (34 millionmore » pounds), sodium aluminate, 400 million gram-moles (72 million pounds), and sodium phosphate, 87 million gram-moles (31 million pounds). Chemical analyses of the sludge and salt cake samples are tabulated to determine the chemical characteristics of the solids. A relative chemical toxicity of the Hanford underground waste tank chemicals is developed from maximum permissible chemical concentrations in air and water. The most toxic chemicals are assumed to be sodium phosphate--35%, sodium aluminate--28%, and chromium hydroxide--19%. If air standards set toxicity limits, the most toxic chemicals are bismuth--41%, chromium hydroxide--23%, and fluoride--10%.« less