skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GRACE satellite observations reveal the severity of recent water over-consumption in the United States

Abstract

Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. The long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  3. Univ. of Utrecht (Netherlands); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1396124
Report Number(s):
LA-UR-17-21913
Journal ID: ISSN 2045-2322
Grant/Contract Number:
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Earth Sciences

Citation Formats

Solander, Kurt C., Reager, John T., Wada, Yoshihide, Famiglietti, James S., and Middleton, Richard S.. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. United States: N. p., 2017. Web. doi:10.1038/s41598-017-07450-y.
Solander, Kurt C., Reager, John T., Wada, Yoshihide, Famiglietti, James S., & Middleton, Richard S.. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. United States. doi:10.1038/s41598-017-07450-y.
Solander, Kurt C., Reager, John T., Wada, Yoshihide, Famiglietti, James S., and Middleton, Richard S.. 2017. "GRACE satellite observations reveal the severity of recent water over-consumption in the United States". United States. doi:10.1038/s41598-017-07450-y. https://www.osti.gov/servlets/purl/1396124.
@article{osti_1396124,
title = {GRACE satellite observations reveal the severity of recent water over-consumption in the United States},
author = {Solander, Kurt C. and Reager, John T. and Wada, Yoshihide and Famiglietti, James S. and Middleton, Richard S.},
abstractNote = {Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. The long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.},
doi = {10.1038/s41598-017-07450-y},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = 2017,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Satellite image datasets and regional climate model results are intercompared for evaluation of model accuracy in the simulation of cloud cover. Both monthly average and individual simulation times are analyzed. To provide a consistent comparison, satellite data are first mapped into the model`s geographic projection, grid domain, and resolution. It is found that September 1988 monthly average cloud fraction results from the model simulations correspond to observations, in both spatial pattern and magnitude, with bias less than {plus_minus}% cloud fraction over the entire inland West. Agreement in the pattern of cloud fraction also is evident for monthly average cloud fractionmore » in July, but there is a negative bias of 10%-30% cloud fraction in the model diagnosis of cloud cover. Correlations between the spatial distributions of model-derived and observed cloud fractions are found to exceed 0.80 for certain geographic regions of the West, and these correlations are largest over mountainous areas during summer. Case studies of a series of daily cloud cover demonstrate the ability of the model to simulate the effects of frontal passage on cloud distribution. The ability of the RegCM1 to simulate daily cloud fraction and diurnal cloud evolution is somewhat weak for the summer convective season. It is anticipated that a more recent version of the regional climate model may improve the simulation of summer season cloud cover, through changes in cloud parameterization and improvements in model resolution. 21 refs., 22 figs.« less
  • A biogenic emissions model for isoprene, monoterpenes, and nitric oxide has been developed with algorithms that rely on normalized difference vegetative index values derived from satellite remote sensing data to infer leaf area index. The model obtains emission factors from the Biogenic Emission Inventory System (BEIS). This biogenic emissions model, combined with a dry deposition model, was applied with environmental variable values supplied by MM5 (the fifth-generation Mesoscale Model). The modeled temporal variations and spatial distributions of the surface emissions rates of isoprene, monoterpenes, and nitric oxide the eastern US agreed well with reported simulations, measurements, and inferences. Use ofmore » the satellite data generates considerable detail in the spatial patterns, high temporal resolution, and a smooth seasonal variation in the emission rates. The new biogenic emissions model was used with a photochemistry modeling system to infer ozone (O{sub 3}) concentrations in the lower troposphere above the eastern United States for a two-day case in July 1995, which had O{sub 3} episodes studied previously by the Ozone Transport Assessment Group. Compared to the results from the OTAG application of BEIS2, the satellite-data-derived isoprene emissions were slightly lower in the northeastern United States, which resulted in smaller values of O{sub 3} concentration and were 3-4 times higher in southeastern mixed forests, which had little impact on O{sub 3} except near strong NO{sub x} emission sources.« less
  • Supply chains for transportation fuels were analyzed using an extensive system boundary to gain insights into the connections between transportation energy and water resource consumption.
  • The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less
  • Dobson spectrophotometer observations conducted since the early-to-mid 1960's at Bismarck, North Dakota; Caribou, Maine; Boulder, Colorado; Wallops Island, Virginia; Nashville, Tennessee; and at Fresno, California, since 1983, have revealed record low total ozone values during 1993. The tendency toward the low ozone values began in May 1992, but accelerated in early 1993. During January-August 1993, ozone monthly means at the stations were more than 2 standard deviations below long-term normal monthly means 72% of the time and more than 3 standard deviations below normals 42% of the time. On average, the January-April 1993 ozone values were 12.6% below normal, withmore » ozone deficits as large as 18% observed at Caribou and Wallops Island in January. Of particular concern are unusually low ozone values that occur in summertime when solar ultraviolet insolation is high. Such record lows occurred at four of the six stations (Caribou, Wallops Island, Fresno, and Nashville). During May-August 1993, ozone was on average 8.5% below normal at these sites. Monthly means at these stations were, furthermore, lower on average by 3.7% than corresponding lowest values observed there in the past. The ozone decrease of 12.6% below normal at the six continental Dobson instrument stations during the winter and spring months of 1993 implies a possible average increase in UV erythemal radiation at that time of 16-25% above normal. The 8.5% decrease in ozone at Caribou, Wallops Island, Fresno, and Nashville, implies that on average, UV erythemal radiation may have been higher than normal at these stations during the summer of 1993 by 11-17%. 5 refs., 3 figs., 1 tab.« less