skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact Models for Defect Diffusivity in Semiconductor Alloys.

Abstract

Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations inmore » an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority.« less

Authors:
 [1];  [1];  [2];  [3]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1395644
Report Number(s):
SAND-2017-10257
657202
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wright, Alan F., Modine, Normand A., Lee, Stephen R., and Foiles, Stephen M. Compact Models for Defect Diffusivity in Semiconductor Alloys.. United States: N. p., 2017. Web. doi:10.2172/1395644.
Wright, Alan F., Modine, Normand A., Lee, Stephen R., & Foiles, Stephen M. Compact Models for Defect Diffusivity in Semiconductor Alloys.. United States. doi:10.2172/1395644.
Wright, Alan F., Modine, Normand A., Lee, Stephen R., and Foiles, Stephen M. 2017. "Compact Models for Defect Diffusivity in Semiconductor Alloys.". United States. doi:10.2172/1395644. https://www.osti.gov/servlets/purl/1395644.
@article{osti_1395644,
title = {Compact Models for Defect Diffusivity in Semiconductor Alloys.},
author = {Wright, Alan F. and Modine, Normand A. and Lee, Stephen R. and Foiles, Stephen M.},
abstractNote = {Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority.},
doi = {10.2172/1395644},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 9
}

Technical Report:

Save / Share:
  • The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity ofmore » samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.« less
  • This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less
  • Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. Projections by semiconductor manufacturers predict that with larger wafer sizes and smaller line width technology the number of defects to be manually classified will increase exponentially. This cooperative research and development agreement (CRADA) between Martin Marietta Energy Systems (MMES) and KLA Instruments developed concepts, algorithms and systems to automate the classification of wafer defects to decrease inspection time, improve the reliability of defect classification, and hence increase process throughput and yield. Image analysis, feature extraction,more » pattern recognition and classification schemes were developed that are now being used as research tools for future products and are being integrated into the KLA line of wafer inspection hardware. An automatic defect classification software research tool was developed and delivered to the CRADA partner to facilitate continuation of this research beyond the end of the partnership.« less