skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy Exascale Earth System Model (E3SM) Project Strategy

Abstract

The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

Authors:
 [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1395510
Report Number(s):
LLNL-TR-738760
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES

Citation Formats

Bader, D. Energy Exascale Earth System Model (E3SM) Project Strategy. United States: N. p., 2017. Web. doi:10.2172/1395510.
Bader, D. Energy Exascale Earth System Model (E3SM) Project Strategy. United States. doi:10.2172/1395510.
Bader, D. 2017. "Energy Exascale Earth System Model (E3SM) Project Strategy". United States. doi:10.2172/1395510. https://www.osti.gov/servlets/purl/1395510.
@article{osti_1395510,
title = {Energy Exascale Earth System Model (E3SM) Project Strategy},
author = {Bader, D.},
abstractNote = {The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.},
doi = {10.2172/1395510},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 9
}

Technical Report:

Save / Share:
  • The goal of the project is to understand how plants survive droughts, as the decimation of transpiration could shift the surface energy balance from latent heat to sensible heat, leading to warming of the lower atmosphere and amplification of drought. The hypothesis we investigated is that there is a store of moisture in the weathered bedrock below the organic soil mantle, so that plants that have roots deep enough to access this moisture reservoir could survive drought. We developed a new stochastic parameterization of hydraulic conductivity that introduces heterogeneity into the traditional formulation and captures the preferential flow through themore » weathered bedrock (Vrettas and Fung, 2015). With the new parameterization in the Richards equation, we succeeded in reproducing the fluctuations of the water table in seven well locations over six years. We also and carried out a series of model experiments that explore how subsurface properties impact evapotranspiration (ET) in a Mediterranean climate where a significant portion of ET is observed to take place in the dry and sunny summer when the precipitation is insufficient to meet the demand. Our results show that hydraulic redistribution is important for sustaining ET in the dry seasons when the vertical gradient in water potential is large. The results highlight the importance of lithology, species composition and root function for ET, especially under dry conditions.« less
  • In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.
  • Although there is only a developing understanding of the many processes affecting and coupling the atmosphere, oceans, and land systems of the earth, we are embarked on an effort to construct a prototype model (CERES) of the full Earth system. As part of this effort, we have proposed to the EPA to construct an Earth System Framework for the CERES model that supports flexible, modular development, coupling, and replacement of Earth System submodel components. This project has two specific areas of study. These areas are (1) the terrestrial contribution to the biogeochemical cycling and (2) the interactions of climate andmore » the land ecosystems. The objectives of these two areas of study are: development of a globally distributed model of terrestrial ecosystem productivity, linking model to the submodels, using coupled system to explore biogeochemical cycles, exploration of greenhouse effect, development of models of surface, and the study of the dynamics of climate change and vegetation response.« less
  • This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s futuremore » transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.« less
  • How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation,more » rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines. Examples of current research are taken from projects funded by the U.S. Department of Energy (DOE) Office of Science at universities and national laboratories, with a special focus on research conducted at Lawrence Berkeley National Laboratory.« less