skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-PGM cell catalysts

Abstract

A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

Authors:
 [1];  [2];  [2]
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
  2. Savannah River Consulting, Aiken, SC (United States)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1395268
Report Number(s):
SRNL-STI-2017-00619
TRN: US1800065
DOE Contract Number:
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; IRON; OXYGEN; CATALYSTS; REDOX REACTIONS; REDUCTION; ELECTROCHEMISTRY

Citation Formats

Colon-Mercado, H., Elvington, M., and Ganesan, P. Non-PGM cell catalysts. United States: N. p., 2017. Web. doi:10.2172/1395268.
Colon-Mercado, H., Elvington, M., & Ganesan, P. Non-PGM cell catalysts. United States. doi:10.2172/1395268.
Colon-Mercado, H., Elvington, M., and Ganesan, P. Wed . "Non-PGM cell catalysts". United States. doi:10.2172/1395268. https://www.osti.gov/servlets/purl/1395268.
@article{osti_1395268,
title = {Non-PGM cell catalysts},
author = {Colon-Mercado, H. and Elvington, M. and Ganesan, P.},
abstractNote = {A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.},
doi = {10.2172/1395268},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Sep 27 00:00:00 EDT 2017},
month = {Wed Sep 27 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFC. Iron based functionalities have been engineered into Metallic Organic Framework (MOF) catalysts to evaluate their impact on activity for the ORR. A series of FePhen@MOF catalysts have been synthesized with varying [Fe] to investigate the effect on electrochemical and electrocatalytic properties. The magnitude of the Fe II/III redox couple and the electrochemical surface area are analyzed to determine if there is a correlation between [Fe] and the ORR onset potential and/or the relative number of active sites.
  • A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
  • Minimizing the quantity of Pt group metals used in polymer membrane fuel cells (PEMFCs) is one of the remaining grand challenges for fuel cell commercialization. Tremendous progress has been achieved over the last two decades in decreasing the Pt loading required for efficient fuel cell performance. Unfortunately, the fluctuations in the price of Pt represent a substantial barrier to the economics of widespread fuel cell use. Durability and impurity tolerance are also challenges that are tightly coupled to fuel cell Pt electrode loading. Traditional approaches to decreasing the amount of Pt required for good performance include: (1) Increasing mass activitymore » by decreasing Pt particle size by supporting on carbon; (2) Alloy formulation Pt-Co, Pt-Cr alloys to improve mass activity; (3) Increasing Pt utilization by optimization of electronic and ionic contact of the Pt particles; (4) Improving conductivity of the electronic and ionic conducting constituents of the membrane electrode assembly; and (5) Improving reactant to and product mass transport away from the electroactive sites. Recent novel approaches include the nanoengineering of core shell catalysts and Pt particles of unusual geometries such as nanowires/whiskers. The success of the aforementioned approaches has been great; however further advances using such approaches have been hampered by a lack of underlining scientific understanding of the catalyst activity, particle growth mechanisms, and optimization strategies for designing composite electrodes The objectives of this report are: (1) Development of durable, high mass activity Platinum Group Metal (PGM) cathode catalysts-enabling lower cost fuel cells; (2) Elucidation of the fundamental relationships between PGM catalyst shape, particle size and activity to help design better catalysts; (3) Optimization of the cathode electrode layer to maximize the performance of PGM catalysts-improving fuel cell performance and lowering cost; (4) Understanding the performance degradation mechanisms of high mass activity cathode catalysts-provide insights to better catalyst design; and (5) Development and testing of fuel cells using ultra-low loading high activity PGM catalysts-validation of advanced concepts.« less
  • There is a strong need to decrease the amount of Pt electrocatalyst used in fuel cells and increase its durability for transportation application. Conventional strategies include Pt nanocrystals and Pt alloy with well-controlled structures, durable carbon support, non-carbon support, etc. We have developed the so-called “metal-metal oxide-carbon” triple junction concept to stabilize Pt and protect carbon from corrosion. It also improved the activity of Pt. The good performance was not achieved in fuel cell test mainly because of the transport issue due to the use of 2D graphene. In this project, our main goal is to demonstrate the concept inmore » fuel cell device test using 3D porous graphene as support so that the transport issue could be addressed.« less