skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water

Abstract

Nanostructured hematite (α-Fe2O3) has been widely studied for use in a variety of thin film applications including solar energy conversion, water oxidation, catalysis, lithium-ion batteries, and gas sensing. Among established deposition methods, atomic layer deposition (ALD) is a leading technique for controlled synthesis of a wide range of nanostructured materials. In this work, ALD of Fe2O3 is demonstrated using FeCl3 and H2O precursors at growth temperatures between 200 and 350 °C. Self-limiting growth of Fe2O3 is demonstrated with a growth rate of ~0.6 Å per cycle. As-deposited, films are nanocrystalline with low chlorine impurities and a mixture of α- and γ-Fe2O3. Post-deposition annealing in O2 leads to phase-pure α-Fe2O3 with increased out-of-plane grain size. Photoelectrochemical measurements under simulated solar illumination reveal high photoactivity toward water oxidation in both as-deposited and post-annealed films. Planar films deposited at low temperature (235 °C) exhibit remarkably high photocurrent densities ~0.71 mA cm-2 at 1.53 V vs. the reversible hydrogen electrode (RHE) without further processing. Films annealed in air at 500 °C show current densities of up to 0.84 mA cm-2 (1.53 V vs. RHE).

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science - Office of High Energy Physics
OSTI Identifier:
1395080
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 1; Journal Issue: 38; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Klug, Jeffrey A., Becker, Nicholas G., Riha, Shannon C., Martinson, Alex B. F., Elam, Jeffrey W., Pellin, Michael J., and Proslier, Thomas. Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water. United States: N. p., 2013. Web. doi:10.1039/c3ta12514a.
Klug, Jeffrey A., Becker, Nicholas G., Riha, Shannon C., Martinson, Alex B. F., Elam, Jeffrey W., Pellin, Michael J., & Proslier, Thomas. Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water. United States. doi:10.1039/c3ta12514a.
Klug, Jeffrey A., Becker, Nicholas G., Riha, Shannon C., Martinson, Alex B. F., Elam, Jeffrey W., Pellin, Michael J., and Proslier, Thomas. Tue . "Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water". United States. doi:10.1039/c3ta12514a.
@article{osti_1395080,
title = {Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water},
author = {Klug, Jeffrey A. and Becker, Nicholas G. and Riha, Shannon C. and Martinson, Alex B. F. and Elam, Jeffrey W. and Pellin, Michael J. and Proslier, Thomas},
abstractNote = {Nanostructured hematite (α-Fe2O3) has been widely studied for use in a variety of thin film applications including solar energy conversion, water oxidation, catalysis, lithium-ion batteries, and gas sensing. Among established deposition methods, atomic layer deposition (ALD) is a leading technique for controlled synthesis of a wide range of nanostructured materials. In this work, ALD of Fe2O3 is demonstrated using FeCl3 and H2O precursors at growth temperatures between 200 and 350 °C. Self-limiting growth of Fe2O3 is demonstrated with a growth rate of ~0.6 Å per cycle. As-deposited, films are nanocrystalline with low chlorine impurities and a mixture of α- and γ-Fe2O3. Post-deposition annealing in O2 leads to phase-pure α-Fe2O3 with increased out-of-plane grain size. Photoelectrochemical measurements under simulated solar illumination reveal high photoactivity toward water oxidation in both as-deposited and post-annealed films. Planar films deposited at low temperature (235 °C) exhibit remarkably high photocurrent densities ~0.71 mA cm-2 at 1.53 V vs. the reversible hydrogen electrode (RHE) without further processing. Films annealed in air at 500 °C show current densities of up to 0.84 mA cm-2 (1.53 V vs. RHE).},
doi = {10.1039/c3ta12514a},
journal = {Journal of Materials Chemistry. A},
issn = {2050-7488},
number = 38,
volume = 1,
place = {United States},
year = {2013},
month = {1}
}

Works referenced in this record:

Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism
journal, March 2001


Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing
journal, January 2003

  • Kim, H.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue 6
  • DOI: 10.1116/1.1622676

Photooxidation of Water at α-Fe[sub 2]O[sub 3] Electrodes
journal, January 1978

  • Kennedy, John H.
  • Journal of The Electrochemical Society, Vol. 125, Issue 5
  • DOI: 10.1149/1.2131532

New Benchmark for Water Photooxidation by Nanostructured α-Fe 2 O 3 Films
journal, December 2006

  • Kay, Andreas; Cesar, Ilkay; Grätzel, Michael
  • Journal of the American Chemical Society, Vol. 128, Issue 49
  • DOI: 10.1021/ja064380l

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Ordered Iron Oxide Nanotube Arrays of Controlled Geometry and Tunable Magnetism by Atomic Layer Deposition
journal, August 2007

  • Bachmann, Julien; Knez, Mato
  • Journal of the American Chemical Society, Vol. 129, Issue 31
  • DOI: 10.1021/ja072465w

Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers
journal, March 2002


Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications
journal, January 2012

  • Marichy, Catherine; Bechelany, Mikhael; Pinna, Nicola
  • Advanced Materials, Vol. 24, Issue 8, p. 1017-1032
  • DOI: 10.1002/adma.201104129

Facile Synthesis of Highly Photoactive α-Fe 2 O 3 -Based Films for Water Oxidation
journal, August 2011

  • Wang, Gongming; Ling, Yichuan; Wheeler, Damon A.
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl202316j

Atomic Layer Deposition of Fe2O3 Using Ferrocene and Ozone
journal, February 2011

  • Martinson, Alex B. F.; DeVries, Michael J.; Libera, Joseph A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 10, p. 4333-4339
  • DOI: 10.1021/jp110203x

Photoelectrochemical Investigation of Ultrathin Film Iron Oxide Solar Cells Prepared by Atomic Layer Deposition
journal, January 2011

  • Klahr, Benjamin M.; Martinson, Alex B. F.; Hamann, Thomas W.
  • Langmuir, Vol. 27, Issue 1
  • DOI: 10.1021/la103541n

Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
journal, June 2005

  • Puurunen, Riikka L.
  • Journal of Applied Physics, Vol. 97, Issue 12, Article No. 121301
  • DOI: 10.1063/1.1940727

Systematic catalytic current enhancement for the oxidation of water at nanostructured iron(III) oxide electrodes
journal, June 2012


Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting
journal, March 2011

  • Lin, Yongjing; Zhou, Sa; Sheehan, Stafford W.
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja110741z

Hematite-based solar water splitting: challenges and opportunities
journal, January 2011

  • Lin, Yongjing; Yuan, Guangbi; Sheehan, Stafford
  • Energy & Environmental Science, Vol. 4, Issue 12
  • DOI: 10.1039/c1ee01850g

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Atomic Layer Deposition and Superconducting Properties of NbSi Films
journal, April 2011

  • Proslier, Thomas; Klug, Jeffrey A.; Elam, Jeffrey W.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 19
  • DOI: 10.1021/jp201873b

Atomic Layer Deposition of Iron Oxide Thin Films and Nanotubes using Ferrocene and Oxygen as Precursors
journal, April 2008

  • Rooth, Ma˚rten; Johansson, Anders; Kukli, Kaupo
  • Chemical Vapor Deposition, Vol. 14, Issue 3-4
  • DOI: 10.1002/cvde.200706649

Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition
journal, August 2002

  • Elam, J. W.; Groner, M. D.; George, S. M.
  • Review of Scientific Instruments, Vol. 73, Issue 8, p. 2981-2987
  • DOI: 10.1063/1.1490410

Reactive Ballistic Deposition of α-Fe 2 O 3 Thin Films for Photoelectrochemical Water Oxidation
journal, March 2010

  • Hahn, Nathan T.; Ye, Heechang; Flaherty, David W.
  • ACS Nano, Vol. 4, Issue 4
  • DOI: 10.1021/nn100032y

Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition
journal, November 2007

  • Knez, M.; Nielsch, K.; Niinistö, L.
  • Advanced Materials, Vol. 19, Issue 21, p. 3425-3438
  • DOI: 10.1002/adma.200700079

Calibration of solar cells by the reference cell method—The spectral mismatch problem
journal, January 1982


?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
journal, March 2005