skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers

Abstract

Since the late 1990’s, the Hagan container was used as the primary container for packaging of plutonium-bearing materials. The Hagan design consisted of a threaded closure, a Viton® ORing, a carbon-carbon filter, and a 304L stainless steel (SS) body. Over the years, Hagans have shown vulnerability in their design [1]. In 2008, The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Material Packaging Manual, which detailed an approach to obtain highconfidence in containers by including specific design requirements, material contents and an approach to determine life span from said contents, and surveillance techniques [2]. In response to both the vulnerability issues with the Hagan and DOE M 441.1-1, the SAVY 4000 container with its twist style closure, Viton® O-Ring, Fiberfrax-Gortex filter, and annealed 316L SS body, was designed as the replacement for Hagan containers, but only for a short term lifespan of 5 years [1]. However, both the Hagan and SAVY 4000 are being pushed to maintain a lifespan of 40 years. Therefore, proper confidence must be placed on each component of each container to last a minimum of 40 years. So far, the biggest concern found during surveillance of these containers is corrosion and the potential for failuremore » by corrosion. One concern is that the containers fail due to stress corrosion cracking (SCC), especially around the weld between the collar and the body as welds leave residual stresses. One advantage the SAVY 4000 has is that the body is annealed, but its weld is still susceptible as it was welded after annealing [3, 4]. Moreover, 316L SS is known to have a higher pitting resistance (pits are a precursor to SCC and can also lead to extensive failure of the material), than 304L SS [4]. During recent surveillance activities, two SAVY 4000’s containing Solution Assay Instrument (SAI) solutions were opened. The SAI SAVY 4000’s contained plutonium (Pu) in 3M HCl solution in plastic volumetric flasks placed inside of polyethylene bags. Historically, a SAVY 4000 containing an SAI solution is packaged for 3 weeks, however, these particular containers were not reopened until 14 months later. When opened, brown-red corrosion product was found all over the inside of the container as shown in Figure 1.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10)
OSTI Identifier:
1394994
Report Number(s):
LA-UR-17-28647
DOE Contract Number:  
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; laser etching Savy Hagan Corrosion

Citation Formats

Hyer, Holden Christopher, Duque, Juan, Smith, Paul Herrick, and Stroud, Mary Ann. Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers. United States: N. p., 2017. Web. doi:10.2172/1394994.
Hyer, Holden Christopher, Duque, Juan, Smith, Paul Herrick, & Stroud, Mary Ann. Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers. United States. doi:10.2172/1394994.
Hyer, Holden Christopher, Duque, Juan, Smith, Paul Herrick, and Stroud, Mary Ann. Fri . "Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers". United States. doi:10.2172/1394994. https://www.osti.gov/servlets/purl/1394994.
@article{osti_1394994,
title = {Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers},
author = {Hyer, Holden Christopher and Duque, Juan and Smith, Paul Herrick and Stroud, Mary Ann},
abstractNote = {Since the late 1990’s, the Hagan container was used as the primary container for packaging of plutonium-bearing materials. The Hagan design consisted of a threaded closure, a Viton® ORing, a carbon-carbon filter, and a 304L stainless steel (SS) body. Over the years, Hagans have shown vulnerability in their design [1]. In 2008, The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Material Packaging Manual, which detailed an approach to obtain highconfidence in containers by including specific design requirements, material contents and an approach to determine life span from said contents, and surveillance techniques [2]. In response to both the vulnerability issues with the Hagan and DOE M 441.1-1, the SAVY 4000 container with its twist style closure, Viton® O-Ring, Fiberfrax-Gortex filter, and annealed 316L SS body, was designed as the replacement for Hagan containers, but only for a short term lifespan of 5 years [1]. However, both the Hagan and SAVY 4000 are being pushed to maintain a lifespan of 40 years. Therefore, proper confidence must be placed on each component of each container to last a minimum of 40 years. So far, the biggest concern found during surveillance of these containers is corrosion and the potential for failure by corrosion. One concern is that the containers fail due to stress corrosion cracking (SCC), especially around the weld between the collar and the body as welds leave residual stresses. One advantage the SAVY 4000 has is that the body is annealed, but its weld is still susceptible as it was welded after annealing [3, 4]. Moreover, 316L SS is known to have a higher pitting resistance (pits are a precursor to SCC and can also lead to extensive failure of the material), than 304L SS [4]. During recent surveillance activities, two SAVY 4000’s containing Solution Assay Instrument (SAI) solutions were opened. The SAI SAVY 4000’s contained plutonium (Pu) in 3M HCl solution in plastic volumetric flasks placed inside of polyethylene bags. Historically, a SAVY 4000 containing an SAI solution is packaged for 3 weeks, however, these particular containers were not reopened until 14 months later. When opened, brown-red corrosion product was found all over the inside of the container as shown in Figure 1.},
doi = {10.2172/1394994},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Sep 22 00:00:00 EDT 2017},
month = {Fri Sep 22 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: