skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Xenon Recovery at Room Temperature using Metal-Organic Frameworks

Abstract

Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6]
  1. Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt
  2. Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17 1951 Sion Valais Switzerland
  3. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA
  4. Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt
  5. IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain
  6. Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1394829
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 45; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English

Citation Formats

Elsaidi, Sameh K., Ongari, Daniele, Xu, Wenqian, Mohamed, Mona H., Haranczyk, Maciej, and Thallapally, Praveen K. Xenon Recovery at Room Temperature using Metal-Organic Frameworks. United States: N. p., 2017. Web. doi:10.1002/chem.201702668.
Elsaidi, Sameh K., Ongari, Daniele, Xu, Wenqian, Mohamed, Mona H., Haranczyk, Maciej, & Thallapally, Praveen K. Xenon Recovery at Room Temperature using Metal-Organic Frameworks. United States. doi:10.1002/chem.201702668.
Elsaidi, Sameh K., Ongari, Daniele, Xu, Wenqian, Mohamed, Mona H., Haranczyk, Maciej, and Thallapally, Praveen K. Mon . "Xenon Recovery at Room Temperature using Metal-Organic Frameworks". United States. doi:10.1002/chem.201702668.
@article{osti_1394829,
title = {Xenon Recovery at Room Temperature using Metal-Organic Frameworks},
author = {Elsaidi, Sameh K. and Ongari, Daniele and Xu, Wenqian and Mohamed, Mona H. and Haranczyk, Maciej and Thallapally, Praveen K.},
abstractNote = {Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.},
doi = {10.1002/chem.201702668},
journal = {Chemistry - A European Journal},
issn = {0947-6539},
number = 45,
volume = 23,
place = {United States},
year = {2017},
month = {7}
}

Works referenced in this record:

A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n
journal, February 1999


Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation
journal, May 2016

  • Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony
  • Angewandte Chemie International Edition, Vol. 55, Issue 29
  • DOI: 10.1002/anie.201602287

Cost analysis of xenon anesthesia: a comparison with nitrous oxide-isoflurane and nitrous oxide-sevoflurane anesthesia
journal, September 1999


RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
journal, February 2015


Correlating the clinical actions and molecular mechanisms of general anesthetics
journal, January 2007


UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Funktionale poröse Koordinationspolymere
journal, April 2004

  • Kitagawa, Susumu; Kitaura, Ryo; Noro, Shin-ichiro
  • Angewandte Chemie, Vol. 116, Issue 18
  • DOI: 10.1002/ange.200300610

Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology
journal, January 2013

  • Parkes, Marie V.; Staiger, Chad L.; Perry IV, John J.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 23
  • DOI: 10.1039/c3cp50774b

The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases
journal, January 2014

  • Wang, Hao; Yao, Kexin; Zhang, Zhijuan
  • Chemical Science, Vol. 5, Issue 2, p. 620-624
  • DOI: 10.1039/C3SC52348A

Enhancing H 2 Uptake by “Close-Packing” Alignment of Open Copper Sites in Metal-Organic Frameworks
journal, September 2008

  • Wang, Xi-Sen; Ma, Shengqian; Forster, Paul M.
  • Angewandte Chemie International Edition, Vol. 47, Issue 38
  • DOI: 10.1002/anie.200802087

Metal–organic frameworks—prospective industrial applications
journal, January 2006

  • Mueller, U.; Schubert, M.; Teich, F.
  • J. Mater. Chem., Vol. 16, Issue 7
  • DOI: 10.1039/B511962F

Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study
journal, September 2013

  • Hulvey, Zeric; Lawler, Keith V.; Qiao, Zhiwei
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp408034u

A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area
journal, September 2005

  • Ferey, G.; Mellot-Draznieks, C.; Serre, C.
  • Science, Vol. 309, Issue 5743, p. 2040-2042
  • DOI: 10.1126/science.1116275

Separation of rare gases and chiral molecules by selective binding in porous organic cages
journal, July 2014

  • Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4035

Noria: A Highly Xe-Selective Nanoporous Organic Solid
journal, July 2016

  • Patil, Rahul S.; Banerjee, Debasis; Simon, Cory M.
  • Chemistry - A European Journal, Vol. 22, Issue 36
  • DOI: 10.1002/chem.201602131

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Noble gases and microporous frameworks; from interaction to application
journal, November 2012


Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks
journal, January 2017

  • Elsaidi, Sameh K.; Mohamed, Mona H.; Simon, Cory M.
  • Chemical Science, Vol. 8, Issue 3
  • DOI: 10.1039/C6SC05012C

Minimum Alveolar Concentration–Awake of Xenon Alone and in Combination with Isoflurane or Sevoflurane
journal, January 2000


Xenon: elemental anaesthesia in clinical practice
journal, January 2005

  • Sanders, Robert D.; Ma, Daqing; Maze, Mervyn
  • British Medical Bulletin, Vol. 71, Issue 1
  • DOI: 10.1093/bmb/ldh034

Effect of quadrupole moment on the phase behavior of binary mixtures containing ethene
journal, July 2005


Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes
journal, September 2007


High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites
journal, March 2013


An Extended Charge Equilibration Method
journal, August 2012

  • Wilmer, Christopher E.; Kim, Ki Chul; Snurr, Randall Q.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 17
  • DOI: 10.1021/jz3008485

Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes
journal, September 2015

  • Mick, Jason R.; Soroush Barhaghi, Mohammad; Jackman, Brock
  • The Journal of Chemical Physics, Vol. 143, Issue 11
  • DOI: 10.1063/1.4930138

Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO
journal, August 2008

  • Bonino, Francesca; Chavan, Sachin; Vitillo, Jenny G.
  • Chemistry of Materials, Vol. 20, Issue 15
  • DOI: 10.1021/cm800686k

Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation
journal, May 2016

  • Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony
  • Angewandte Chemie, Vol. 128, Issue 29
  • DOI: 10.1002/ange.201602287

Enhancing H 2 Uptake by “Close-Packing” Alignment of Open Copper Sites in Metal-Organic Frameworks
journal, September 2008

  • Wang, Xi-Sen; Ma, Shengqian; Forster, Paul M.
  • Angewandte Chemie, Vol. 120, Issue 38
  • DOI: 10.1002/ange.200802087

Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)
journal, January 2014

  • Queen, Wendy L.; Hudson, Matthew R.; Bloch, Eric D.
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC02064B

Metal–organic framework with optimally selective xenon adsorption and separation
journal, June 2016

  • Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11831

Functional Porous Coordination Polymers
journal, April 2004

  • Kitagawa, Susumu; Kitaura, Ryo; Noro, Shin-ichiro
  • Angewandte Chemie International Edition, Vol. 43, Issue 18, p. 2334-2375
  • DOI: 10.1002/anie.200300610

Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton
journal, December 2014

  • Banerjee, Debasis; Cairns, Amy J.; Liu, Jian
  • Accounts of Chemical Research, Vol. 48, Issue 2
  • DOI: 10.1021/ar5003126

The diverse biological properties of the chemically inert noble gases
journal, April 2016


Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248