skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics of direct-contact ultrasonic cloth drying process

Abstract

Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected to ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite sidemore » of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less

Authors:
 [1];  [1];  [2]; ORCiD logo [2];  [1]
  1. Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Building Equipment Research Energy and Transportation Science Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
OSTI Identifier:
1394767
Alternate Identifier(s):
OSTI ID: 1414798
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Energy (Oxford)
Additional Journal Information:
Journal Name: Energy (Oxford); Journal Volume: 125; Journal Issue: C; Journal ID: ISSN 0360-5442
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ultrasonic fabric dying; droplet atomization; kinematics; thermal effect

Citation Formats

Peng, Chang, Ravi, Saitej, Patel, Viral K., Momen, Ayyoub M., and Moghaddam, Saeed. Physics of direct-contact ultrasonic cloth drying process. United States: N. p., 2017. Web. doi:10.1016/j.energy.2017.02.138.
Peng, Chang, Ravi, Saitej, Patel, Viral K., Momen, Ayyoub M., & Moghaddam, Saeed. Physics of direct-contact ultrasonic cloth drying process. United States. doi:10.1016/j.energy.2017.02.138.
Peng, Chang, Ravi, Saitej, Patel, Viral K., Momen, Ayyoub M., and Moghaddam, Saeed. Mon . "Physics of direct-contact ultrasonic cloth drying process". United States. doi:10.1016/j.energy.2017.02.138. https://www.osti.gov/servlets/purl/1394767.
@article{osti_1394767,
title = {Physics of direct-contact ultrasonic cloth drying process},
author = {Peng, Chang and Ravi, Saitej and Patel, Viral K. and Momen, Ayyoub M. and Moghaddam, Saeed},
abstractNote = {Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected to ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.},
doi = {10.1016/j.energy.2017.02.138},
journal = {Energy (Oxford)},
number = C,
volume = 125,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: