skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas

Abstract

This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO 2 capture process. This will occur via improvements in three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termedmore » New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO 2 capture rate with 95% CO 2 purity at a cost of $40/tonne of CO 2 by 2025 and at a cost of electricity (COE) 30% less than baseline CO 2 capture approaches by 2030. This project was divided into two phases. Phase 1 is the planning phase, and Phase 2 is the construction, operations, testing, and analysis phase. A down select occurred after Phase 1. Phase 1 activities were carried out during this reporting period, and therefore, Phase 1 activities are solely considered in this report. The project was not selected for Phase 2 funding.« less

Authors:
 [1]
  1. Southern Company Services, Inc., Wilsonville, AL (United States)
Publication Date:
Research Org.:
Southern Company Services, Inc., Wilsonville, AL (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1394632
Report Number(s):
DOE-SCS-0026590
DOE Contract Number:
FE0026590
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 01 COAL, LIGNITE, AND PEAT

Citation Formats

Carroll, John. Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas. United States: N. p., 2017. Web. doi:10.2172/1394632.
Carroll, John. Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas. United States. doi:10.2172/1394632.
Carroll, John. Sun . "Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas". United States. doi:10.2172/1394632. https://www.osti.gov/servlets/purl/1394632.
@article{osti_1394632,
title = {Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas},
author = {Carroll, John},
abstractNote = {This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO2 capture process. This will occur via improvements in three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO2 capture rate with 95% CO2 purity at a cost of $40/tonne of CO2 by 2025 and at a cost of electricity (COE) 30% less than baseline CO2 capture approaches by 2030. This project was divided into two phases. Phase 1 is the planning phase, and Phase 2 is the construction, operations, testing, and analysis phase. A down select occurred after Phase 1. Phase 1 activities were carried out during this reporting period, and therefore, Phase 1 activities are solely considered in this report. The project was not selected for Phase 2 funding.},
doi = {10.2172/1394632},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Oct 01 00:00:00 EDT 2017},
month = {Sun Oct 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: