skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lignin carbon fiber: The path for quality

Abstract

Lignin represents an abundant biopolymer and a major waste from lignocellulosic processing plants, yet the utilization of lignin for fungible products remains one of the most challenging technical barriers for pulp mills and the modern biorefinery industry. In recent decades, lignin has been sought after as a precursor polymer for carbon fiber due to the high carbon content (up to 60%). Furthermore lignin carbon fiber is expected to be compatible with the market size of the pulp and paper industry and may have transformative impact on petroleum-based carbon fiber.

Authors:
 [1];  [1]; ORCiD logo [2]
  1. Texas A & M Univ., College Station, TX (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1394613
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Tappi Journal
Additional Journal Information:
Journal Volume: 16; Journal Issue: 3; Journal ID: ISSN 0734-1415
Publisher:
Technical Association of the Pulp and Paper Industry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Yuan, Joshua S., Li, Qiang, and Ragauskas, Arthur J.. Lignin carbon fiber: The path for quality. United States: N. p., 2017. Web.
Yuan, Joshua S., Li, Qiang, & Ragauskas, Arthur J.. Lignin carbon fiber: The path for quality. United States.
Yuan, Joshua S., Li, Qiang, and Ragauskas, Arthur J.. Wed . "Lignin carbon fiber: The path for quality". United States. doi:. https://www.osti.gov/servlets/purl/1394613.
@article{osti_1394613,
title = {Lignin carbon fiber: The path for quality},
author = {Yuan, Joshua S. and Li, Qiang and Ragauskas, Arthur J.},
abstractNote = {Lignin represents an abundant biopolymer and a major waste from lignocellulosic processing plants, yet the utilization of lignin for fungible products remains one of the most challenging technical barriers for pulp mills and the modern biorefinery industry. In recent decades, lignin has been sought after as a precursor polymer for carbon fiber due to the high carbon content (up to 60%). Furthermore lignin carbon fiber is expected to be compatible with the market size of the pulp and paper industry and may have transformative impact on petroleum-based carbon fiber.},
doi = {},
journal = {Tappi Journal},
number = 3,
volume = 16,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
The DOI is not currently available

Save / Share:
  • Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 addedmore » value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.« less
  • ABSTRACT: A Kraft hardwood lignin (HWL) and an organic-purified hardwood lignin (HWL-OP) were evaluated as potential precursors for the production of lowcost carbon fibers. It was found that the unpurified HWL exhibited poor spinnability while the HWL-OP exhibited excellent spinnability characteristics. Fibers of various diameters were obtained from the HWL-OP. Thermostabilization studies showed that oxidative stabilization can only be used to convert HWL-OP-based fibers into carbon fibers if extremely low heating rates are applied. Carbonized lignin-based fibers had tensile strength of 0.51 GPa and tensile modulus of 28.6 GPa. VC
  • Lignin is an underused but major component of biomass. One possible area of utilization is the production of carbon fiber. A necessary processing step is the stabilization of lignin fiber (typically in an oxygen environment) before high temperature treatment. We investigate oxidative, thermal conversion of lignin using computational methods. Dilignol model compounds for the most common (seven) linkages in softwood are chosen to represent the diverse structure of lignin. We perform molecular dynamics simulation where the potential energy surface is described by a reactive force field (ReaxFF). We calculate overall activation energies for model conversion and reveal initial mechanisms ofmore » formaldehyde formation. We record fragmentation patterns and average carbon oxidation numbers at various temperatures. Most importantly, we identify mechanisms for stabilizing reactions that result in cyclic, and rigid connections in softwood lignin fibers that are necessary for further processing into carbon fibers.« less
  • We investigate the oxidative, thermal conversion of softwood lignin by performing molecular dynamics simulations based on a reactive force field (ReaxFF). The lignin samples are constructed from coniferyl alcohol units, which are connected through linkages that are randomly selected from a natural distribution of linkages in softwood. The goal of this work is to simulate the oxidative stabilization step during carbon fiber production from lignin precursor. We find that at simulation conditions where stabilization reactions occur, the lignin fragments have already undergone extensive degradation. The 5-5 linkage shows the highest reactivity towards cyclization and dehydrogenation.