skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

Abstract

This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

Authors:
 [1];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1394367
Report Number(s):
ORNL/TM-2017/376
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Harrison, Thomas J., Howard, Richard H., and Rader, Jordan D. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel. United States: N. p., 2017. Web. doi:10.2172/1394367.
Harrison, Thomas J., Howard, Richard H., & Rader, Jordan D. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel. United States. doi:10.2172/1394367.
Harrison, Thomas J., Howard, Richard H., and Rader, Jordan D. Fri . "Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel". United States. doi:10.2172/1394367. https://www.osti.gov/servlets/purl/1394367.
@article{osti_1394367,
title = {Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel},
author = {Harrison, Thomas J. and Howard, Richard H. and Rader, Jordan D.},
abstractNote = {This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.},
doi = {10.2172/1394367},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2017},
month = {Fri Sep 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical informationmore » is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.« less
  • This program will focus on the integration of all functional disciplines of the design, manufacturing, materials, fabrication and producibility to define and demonstrate a highly reliable, easily maintained, low cost liquid methane turbopump as a component for the STBE (Space Transportation Booster Engine) using the STME (main engine) oxygen turbopump. A cost model is to be developed to predict the recurring cost of production hardware and operations. A prime objective of the program is to design the liquid methane turbopump to be used in common with a LH{sub 2} turbopump optimized for the STME. Time phasing of the effort ismore » presented and interrelationship of the tasks is defined. Major subcontractors are identified and their roles in the program are described.« less
  • The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less
  • The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less
  • The objective of this National Program is to provide the technical data, test procedures, guidelines, and consensus standards needed by manufacturers, designers, and builders to produce buildings of high energy efficiency while concurrently meeting safety, durability, habitability, and economic objectives. The goal is to conserve the nations's energy. The Plan describes ongoing technical work on insulation and improvement of building envelope systems, needed new research, development, and demonstration in these areas, and a program for carrying out the required technology. It discusses several thermal-insulating materials currently in use in the marketplace, properties that need to be evaluated for all insulations,more » and gaps in existing knowledge and test procedures for selected characteristics of each of these useful materials. It describes more than a dozen technical areas in which new measurement technology, new technical data, and new standards are needed for the major elements of building envelopes; namely, floors, walls, and ceiling/roof constructions. The procedures to introduce new knowledge and performance requirements into the commerce of building are also described. The Plan contains about 40 major tasks, described in three chapters on Thermal Insulating Materials, Thermal Envelope Systems, and Implementation. The principal outputs of the Plan are summarized.« less