skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production

Abstract

Reducing the performance risk surrounding a wind project can potentially lead to a lower weighted-average cost of capital (WACC), and hence a lower levelized cost of energy (LCOE), through an advantageous shift in capital structure, and possibly also a reduction in the cost of capital. Specifically, a reduction in performance risk will move the 1-year P99 annual energy production (AEP) estimate closer to the P50 AEP estimate, which in turn reduces the minimum debt service coverage ratio (DSCR) required by lenders, thereby allowing the project to be financed with a greater proportion of low-cost debt. In addition, a reduction in performance risk might also reduce the cost of one or more of the three sources of capital that are commonly used to finance wind projects: sponsor or cash equity, tax equity, and/or debt. Preliminary internal LBNL analysis of the maximum possible LCOE reduction attainable from reducing the performance risk of a wind project found a potentially significant opportunity for LCOE reduction of ~$10/MWh, by reducing the P50 DSCR to its theoretical minimum value of 1.0 (Bolinger 2015b, 2014) and by reducing the cost of sponsor equity and debt by one-third to one-half each (Bolinger 2015a, 2015b). However, with FY17 fundingmore » from the U.S. Department of Energy’s Atmosphere to Electrons (A2e) Performance Risk, Uncertainty, and Finance (PRUF) initiative, LBNL has been revisiting this “bookending” exercise in more depth, and now believes that its earlier preliminary assessment of the LCOE reduction opportunity was overstated. This reassessment is based on two new-found understandings: (1) Due to ever-present and largely irreducible inter-annual variability (IAV) in the wind resource, the minimum required DSCR cannot possibly fall to 1.0 (on a P50 basis), and (2) A reduction in AEP uncertainty will not necessarily lead to a reduction in the cost of capital, meaning that a shift in capital structure is perhaps the best that can be expected (perhaps along with a modest decline in the cost of cash equity as new investors enter the market).« less

Authors:
 [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1393624
Report Number(s):
LBNL-2001028
ark:/13030/qt4255j5bx
DOE Contract Number:
AC02-05CH11231
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION

Citation Formats

Bolinger, Mark. Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production. United States: N. p., 2017. Web. doi:10.2172/1393624.
Bolinger, Mark. Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production. United States. doi:10.2172/1393624.
Bolinger, Mark. Thu . "Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production". United States. doi:10.2172/1393624. https://www.osti.gov/servlets/purl/1393624.
@article{osti_1393624,
title = {Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production},
author = {Bolinger, Mark},
abstractNote = {Reducing the performance risk surrounding a wind project can potentially lead to a lower weighted-average cost of capital (WACC), and hence a lower levelized cost of energy (LCOE), through an advantageous shift in capital structure, and possibly also a reduction in the cost of capital. Specifically, a reduction in performance risk will move the 1-year P99 annual energy production (AEP) estimate closer to the P50 AEP estimate, which in turn reduces the minimum debt service coverage ratio (DSCR) required by lenders, thereby allowing the project to be financed with a greater proportion of low-cost debt. In addition, a reduction in performance risk might also reduce the cost of one or more of the three sources of capital that are commonly used to finance wind projects: sponsor or cash equity, tax equity, and/or debt. Preliminary internal LBNL analysis of the maximum possible LCOE reduction attainable from reducing the performance risk of a wind project found a potentially significant opportunity for LCOE reduction of ~$10/MWh, by reducing the P50 DSCR to its theoretical minimum value of 1.0 (Bolinger 2015b, 2014) and by reducing the cost of sponsor equity and debt by one-third to one-half each (Bolinger 2015a, 2015b). However, with FY17 funding from the U.S. Department of Energy’s Atmosphere to Electrons (A2e) Performance Risk, Uncertainty, and Finance (PRUF) initiative, LBNL has been revisiting this “bookending” exercise in more depth, and now believes that its earlier preliminary assessment of the LCOE reduction opportunity was overstated. This reassessment is based on two new-found understandings: (1) Due to ever-present and largely irreducible inter-annual variability (IAV) in the wind resource, the minimum required DSCR cannot possibly fall to 1.0 (on a P50 basis), and (2) A reduction in AEP uncertainty will not necessarily lead to a reduction in the cost of capital, meaning that a shift in capital structure is perhaps the best that can be expected (perhaps along with a modest decline in the cost of cash equity as new investors enter the market).},
doi = {10.2172/1393624},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratorymore » has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems, increases the competence of in-house staff, plus a host of other non-energy benefits. These findings demonstrate that commissioning is arguably the single-most cost-effective strategy for reducing energy, costs, and greenhouse gas emissions in buildings today. Energy savings tend to persist well over at least a 3- to 5-year timeframe, but data over longer time horizons are not available. It is thus important to 'Trust but Verify,' and indeed the field is moving towards a monitoring-based paradigm in which instrumentation is used not only to confirm savings, but to identify opportunities that would otherwise go undetected. On balance, we view the findings here as conservative, in the sense that they underestimate the actual performance of projects when all costs and benefits are considered. They underestimate the technical potential for a scenario in which best practices are applied.« less
  • A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less
  • This project investigated an innovative manufacturing process intended to minimize the cost of production of titanium materials and components, and increase the adoption of Ti components for energy consuming applications, such as automobiles. A key innovation of the proposed manufacturing approach is a novel Ti powder sintering technology for making titanium materials with ultrafine grain microstructure in the as-sintered state with minimum, or an absence, of post-sintering processes. The new sintering technology is termed Hydrogen Sintering and Phase Transformations (HSPT), and constitutes a promising manufacturing technology that can be used to produce titanium (Ti) materials and components in a near-net-shapemore » form, thus also minimizing machining costs. Our objective was to meet, or possibly surpass, the mechanical property levels for ASTM B348 Grade 5 for wrought Ti-6Al-4V. Although specific applications call for varying mechanical property requirements, ASTM B348 was created for the demanding applications of the aerospace industry, and is the established standard for Ti-6Al-4V. While the primary goal was to meet, or exceed this standard, the team also had the goal of demonstrating this could be done at a significantly lower cost of production. Interim goals of the project were to fully develop this novel sintering process, and provide sufficient baseline testing to make the method practical and attractive to industry. By optimizing the process parameters for the sintering of titanium hydride (TiH 2) powders in a hydrogen atmosphere and controlling the phase transformations during and after sintering, the HSPT process was expected to reduce the energy consumption, and thus cost, of making Ti alloys and fabricating Ti components. The process was designed such that no high temperature melting is required for producing Ti alloys; little or no post-sintering processing is needed for producing desired microstructures (and therefore enhanced mechanical properties), and finally, minimum machining is needed to fabricate finished Ti components. An energy analysis within this report provides more detail, but calculated values indicate that the HSPT process is less than half as energy intensive as conventional wrought processing, while producing mechanical properties that are comparable. In addition to the energy savings anticipated from the industrial production of Ti components, a second prong of energy savings resides in the use phase of components produced, primarily from use in the transportation sector. Titanium has a number of material qualities appropriate for the auto industry, particularly low mass and corrosion resistance. By reducing the weight of automobiles and other vehicles, energy costs and CO 2 production will be reduced over the lifetime of the vehicles, and components in corrosive environments on vehicles, such as exhaust systems and other under carriage parts, may not have to be replaced during a vehicle’s lifetime. Our analysis indicates that by replacing only 5.6 kg of steel parts in an auto with Ti components across the entire US fleet would save approximately 486 million gallons of gasoline per year. This correlates to a reduction of 3.6 million metric tons of CO 2 per year. The potential for replacing many more of the steel parts in automobiles with lighter weight titanium components is clear. The project was very successful overall, meeting all milestones and surpassing project goals in terms of mechanical properties and microstructures produced. In addition to tensile properties, fatigue properties were emphasized in the project work. Powder metallurgy processes often have porosity to some degree in their final microstructure, and porosity is a well-known cause of crack initiation and low fatigue performance. Although many automobile applications do not undergo fatigue stress regimes, many others do encounter cyclic stress, and design criteria in the latter case require good fatigue properties. Production and testing of HSPT parts showed excellent tensile properties and fracture toughness, and fatigue properties that exceeded all previously reported powder metallurgy Ti methods, overlapping with wrought processed values. Fatigue limits exceeded 500 MPa and tensile strength exceeded 1,000 MPa while maintaining good ductility. Microstructures produced during the project period easily surpassed pre-project expectations. In addition to producing very fine grains in the as-sintered state (without post sintered thermo-mechanical work), porosity was reduced and industrially relevant microstructures previously undemonstrated in any other powder metallurgy titanium method were produced using HSPT materials. These microstructures, both bi-modal and globularized, were produced with simple post-sinter heat treatments, but without the need for energy intensive mechanical work. The employed heat treatments expanded the available mechanical property range (tensile strength vs. ductility) of the HSPT system in Ti-6Al-4V. The project has resulted in the publication, thus far, of five refereed journal articles and five conference proceedings papers, as well as a patent application, two dissertations and a master’s thesis. Two additional journal articles are currently under review, and at least three others are currently in preparation, with several additional students anticipated to graduate within the coming year. Presentations and papers were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the Ti research teams within Prof. Fang’s and Prof. Chandran’s research groups had a strong presence at the 13th World Conference on Ti, August 16-20, 2015, in San Diego. Several research groups in the US and in Europe are now performing experiments using the HSPT process. Accompanying efforts to bring HSPT to the Ti community at large, and industry in particular, work has continued with our partners and with other interested industrial Ti users and producers, including Boeing and GKN (a major powder metallurgy parts manufacturer). Commercialization has been a central focus of the final phase of the project, and Reading Alloys signed a provisional licensing agreement in summer of 2015. They are currently seeking an appropriate customer with which to pursue initial parts manufacturing efforts. Other licensing options and partners are continuing to be pursued. The promise of lightweight, strong and corrosion resistant Ti alloys with long fatigue lifetimes for automobile or transportation applications has been the vision of the metal industry since titanium came to the attention of scientists and engineers. The sole limitation of realizing these goals has been cost, which is primarily a function of energy used in production. The HSPT process was shown through this work to be capable of realizing this goal, and facilitating the practical use of titanium in US automotive and other industries.« less
  • The purpose of this work was to determine the relative loadings of contaminants from potential sources which impact the Lower Piscataqua River Estuary. Chemical analyses have been conducted on sediments from this estuary in the vicinity of the Portsmouth Naval Shipyard, Kittery, Maine. Data from this study indicated that the estuary receives large inputs of sewage material and lesser inputs from other sources. Stations sampled adjacent to the shipyard appear to have additional inputs from a petrogenic source of hydrocarbons. This source appears to be different from those contributing to other areas of the estuary.