skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

Abstract

We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [5];  [6];  [1]
  1. Univ. of Melbourne, Parkville VIC (Australia). School of Physics
  2. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Physics and Astronomy
  3. Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Div.; Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  5. Univ. of Illinois, Urbana, IL (United States). Dept. of Astronomy, Dept. of Physics
  6. Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); Australian Research Council
OSTI Identifier:
1393569
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Cosmology and Astroparticle Physics
Additional Journal Information:
Journal Volume: 2017; Journal Issue: 08; Journal ID: ISSN 1475-7516
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; CMBR polarization; Galaxy clusters; Weak gravitational lensing

Citation Formats

Raghunathan, Srinivasan, Patil, Sanjaykumar, Baxter, Eric J., Bianchini, Federico, Bleem, Lindsey E., Crawford, Thomas M., Holder, Gilbert P., Manzotti, Alessandro, and Reichardt, Christian L. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/08/030.
Raghunathan, Srinivasan, Patil, Sanjaykumar, Baxter, Eric J., Bianchini, Federico, Bleem, Lindsey E., Crawford, Thomas M., Holder, Gilbert P., Manzotti, Alessandro, & Reichardt, Christian L. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments. United States. doi:10.1088/1475-7516/2017/08/030.
Raghunathan, Srinivasan, Patil, Sanjaykumar, Baxter, Eric J., Bianchini, Federico, Bleem, Lindsey E., Crawford, Thomas M., Holder, Gilbert P., Manzotti, Alessandro, and Reichardt, Christian L. Fri . "Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments". United States. doi:10.1088/1475-7516/2017/08/030.
@article{osti_1393569,
title = {Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments},
author = {Raghunathan, Srinivasan and Patil, Sanjaykumar and Baxter, Eric J. and Bianchini, Federico and Bleem, Lindsey E. and Crawford, Thomas M. and Holder, Gilbert P. and Manzotti, Alessandro and Reichardt, Christian L.},
abstractNote = {We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.},
doi = {10.1088/1475-7516/2017/08/030},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 08,
volume = 2017,
place = {United States},
year = {Fri Aug 25 00:00:00 EDT 2017},
month = {Fri Aug 25 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 25, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
  • Gravitational lensing can be used to directly constrain the projected density profile of galaxy clusters. We discuss possible future constraints using lensing of the cosmic microwave background (CMB) temperature and polarization, and compare to results from using galaxy weak lensing. We model the moving lens and kinetic Sunyaev-Zel'dovich signals that confuse the temperature CMB lensing when cluster velocities and angular momenta are unknown, and show how they degrade parameter constraints. The CMB polarization cluster lensing signal is {approx}1 {mu}K for massive clusters and challenging to detect; however it should be significantly cleaner than the temperature signal and may provide themore » most robust constraints at low noise levels. Galaxy lensing is likely to be much better for constraining cluster masses at low redshift, but for clusters at redshift z > or approx. 1 future CMB lensing observations may be able to do better.« less
  • The work presented in this paper evaluates the statistical characteristics of regional bias and expected error in reconstructions of real PET data of human brain fluorodeoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task that the authors have investigated is that of quantifying radioisotope uptake in regions-of-interest (ROI's). They first describe a robust methodology for the use of the MLE method with clinical data which contains only one adjustable parameter: the kernel sizemore » for a Gaussian filtering operation that determines final resolution and expected regional error. Simulation results are used to establish the fundamental characteristics of the reconstructions obtained by out methodology, corresponding to the case in which the transition matrix is perfectly known. Then, data from 72 independent human brain FDG scans from four patients are used to show that the results obtained from real data are consistent with the simulation, although the quality of the data and of the transition matrix have an effect on the final outcome.« less
  • In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less
  • We propose a method for cosmographic measurements by combining gravitational lensing of the cosmic microwave background (CMB) with cosmic shear surveys. We cross-correlate the galaxy counts in the lens plane with two different source planes: the CMB at z{approx}1100 and galaxies at an intermediate redshift. The ratio of the galaxy count/CMB lensing cross-correlation to the galaxy count/galaxy lensing cross-correlation is shown to be a purely geometric quantity, depending only on the distribution function of the source galaxies. By combining Planck, the Advanced Dark Energy Physics Telescope, and the Large Synoptic Survey Telescope, the ratio can be measured to {approx}4% accuracy,more » whereas a future polarization-based experiment like CMBPOL can make a more precise ({approx}1%) measurement. For cosmological models where the curvature and the equation of state parameter are allowed to vary, the direction of degeneracy defined by the measurement of this ratio is different from that traced out by baryon acoustic oscillation measurements. Combining this method with the stacked cluster mass reconstruction cosmography technique as proposed by Hu, Holz, and Vale (2007), the uncertainty in the ratio can be further reduced, improving the constraints on cosmological parameters. We also study the implications of the lensing-ratio measurement for early dark energy models, in the context of the parametrization proposed by Doran and Robbers (2006). For models which are degenerate with respect to the CMB, we find both baryon acoustic oscillation and lensing-ratio measurements to be insensitive to the early component of the dark energy density.« less