skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis

Abstract

Detailed analysis of electrochemical reactions occurring in rechargeable Fluoride-Ion Batteries (FIBs) is provided by means of synchrotron X-ray diffraction (XRD) and Pair Distribution Function (PDF) analysis.

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [2];  [2]; ORCiD logo [3]
  1. Sorbonne Univ., Paris (France)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source
  3. Sorbonne Univ., Paris (France); Network on the Electrochemical Storage of Energy (RS2E), Lille (France)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1392897
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 30; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Grenier, Antonin, Porras-Gutierrez, Ana-Gabriela, Groult, Henri, Beyer, Kevin A., Borkiewicz, Olaf J., Chapman, Karena W., and Dambournet, Damien. Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis. United States: N. p., 2017. Web. doi:10.1039/C7TA04005A.
Grenier, Antonin, Porras-Gutierrez, Ana-Gabriela, Groult, Henri, Beyer, Kevin A., Borkiewicz, Olaf J., Chapman, Karena W., & Dambournet, Damien. Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis. United States. doi:10.1039/C7TA04005A.
Grenier, Antonin, Porras-Gutierrez, Ana-Gabriela, Groult, Henri, Beyer, Kevin A., Borkiewicz, Olaf J., Chapman, Karena W., and Dambournet, Damien. Wed . "Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis". United States. doi:10.1039/C7TA04005A.
@article{osti_1392897,
title = {Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis},
author = {Grenier, Antonin and Porras-Gutierrez, Ana-Gabriela and Groult, Henri and Beyer, Kevin A. and Borkiewicz, Olaf J. and Chapman, Karena W. and Dambournet, Damien},
abstractNote = {Detailed analysis of electrochemical reactions occurring in rechargeable Fluoride-Ion Batteries (FIBs) is provided by means of synchrotron X-ray diffraction (XRD) and Pair Distribution Function (PDF) analysis.},
doi = {10.1039/C7TA04005A},
journal = {Journal of Materials Chemistry. A},
number = 30,
volume = 5,
place = {United States},
year = {Wed Jul 05 00:00:00 EDT 2017},
month = {Wed Jul 05 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 5, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Operando pair distribution function (PDF) analysis and ex situ Na-23 magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from Na-23 ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electro-chemically; a-Na3-xSb (x approximate to 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, amore » highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3-xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphofis network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3-xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3-xSb without the formation of a-Na3-xSb. a-Na3-xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature Na-23 NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
  • We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
    Cited by 29
  • We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
  • The structural transformations that occur when FeF3 is cycled at room temperature in a Li cell were investigated using a combination of X-ray diffraction (XRD), pair distribution function (PDF) analysis, and magic-angle-spinning NMR spectroscopy. Two regions are seen on discharge. The first occurs between Li = 0 and 1.0 and involves an insertion reaction. This first region actually comprises two steps: First, a two-phase reaction between Li = 0 and 0.5 occurs, and the Li0.5FeF3 phase that is formed gives rise to a Li NMR resonance due to Li+ ions near both Fe3+ and Fe2+ ions. On the basis ofmore » the PDF data, the local structure of this phase is closer to the rutile structure than the original ReO3 structure. Second, a single-phase intercalation reaction occurs between Li = 0.5 and 1.0, for which the Li NMR data indicate a progressive increase in the concentration of Fe2+ ions. In the second region, the conversion reaction, superparamagnetic, nanosized (3 nm) Fe metal is formed, as indicated by the XRD and NMR data, along with some LiF and a third phase that is rich in Li and F. The charge process involves the formation of a series of intercalation phases with increasing Fe oxidation state, which, on the basis of the Li NMR and PDF data, have local structures that are similar to the intercalation phases seen during the first stage of the discharge process. The solid-state NMR and XRD results for the rutile phase FeF2 are presented for comparison, and the data indicate that an insertion reaction also occurs, which is accompanied by the formation of LiF. This is followed by the formation of Fe nanoparticles and LiF via a conversion reaction.« less