skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT

Abstract

We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 sigma by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, (tau) over bar (e) = (3.75 +/- 0.89) x 10(-3). We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on (tau) over bar (e), and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales greater than or similar to 100 Mpc.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
United Kingdom Science and Technology Facilities Council; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); University of Illinois-Urbana-Champaign - National Center for Supercomputing Applications; University of Chicago - Kavli Institute for Cosmological Physics
OSTI Identifier:
1392302
DOE Contract Number:
AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Monthly Notices of the Royal Astronomical Society; Journal Volume: 461; Journal Issue: 3
Country of Publication:
United States
Language:
English
Subject:
Cosmic background radiation – galaxies: clusters; clusters; general – large-scale structure of Universe

Citation Formats

Soergel, B., Flender, S., Story, K. T., Bleem, L., Giannantonio, T., Efstathiou, G., Rykoff, E., Benson, B. A., Crawford, T., Dodelson, S., Habib, S., Heitmann, K., Holder, G., Jain, B., Rozo, E., Saro, A., Weller, J., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Chiu, I., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., de Haan, T., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Holzapfel, W. L., Honscheid, K., James, D. J., Keisler, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Omori, Y., Plazas, A. A., Rapetti, D., Reichardt, C. L., Romer, A. K., Roodman, A., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Stark, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vieira, J. D., Walker, A. R., and Whitehorn, N.. Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT. United States: N. p., 2016. Web. doi:10.1093/mnras/stw1455.
Soergel, B., Flender, S., Story, K. T., Bleem, L., Giannantonio, T., Efstathiou, G., Rykoff, E., Benson, B. A., Crawford, T., Dodelson, S., Habib, S., Heitmann, K., Holder, G., Jain, B., Rozo, E., Saro, A., Weller, J., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Chiu, I., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., de Haan, T., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Holzapfel, W. L., Honscheid, K., James, D. J., Keisler, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Omori, Y., Plazas, A. A., Rapetti, D., Reichardt, C. L., Romer, A. K., Roodman, A., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Stark, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vieira, J. D., Walker, A. R., & Whitehorn, N.. Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT. United States. doi:10.1093/mnras/stw1455.
Soergel, B., Flender, S., Story, K. T., Bleem, L., Giannantonio, T., Efstathiou, G., Rykoff, E., Benson, B. A., Crawford, T., Dodelson, S., Habib, S., Heitmann, K., Holder, G., Jain, B., Rozo, E., Saro, A., Weller, J., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Chiu, I., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., de Haan, T., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Holzapfel, W. L., Honscheid, K., James, D. J., Keisler, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Omori, Y., Plazas, A. A., Rapetti, D., Reichardt, C. L., Romer, A. K., Roodman, A., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Stark, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vieira, J. D., Walker, A. R., and Whitehorn, N.. 2016. "Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT". United States. doi:10.1093/mnras/stw1455.
@article{osti_1392302,
title = {Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT},
author = {Soergel, B. and Flender, S. and Story, K. T. and Bleem, L. and Giannantonio, T. and Efstathiou, G. and Rykoff, E. and Benson, B. A. and Crawford, T. and Dodelson, S. and Habib, S. and Heitmann, K. and Holder, G. and Jain, B. and Rozo, E. and Saro, A. and Weller, J. and Abdalla, F. B. and Allam, S. and Annis, J. and Armstrong, R. and Benoit-Lévy, A. and Bernstein, G. M. and Carlstrom, J. E. and Carnero Rosell, A. and Carrasco Kind, M. and Castander, F. J. and Chiu, I. and Chown, R. and Crocce, M. and Cunha, C. E. and D'Andrea, C. B. and da Costa, L. N. and de Haan, T. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Doel, P. and Estrada, J. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and Gaztanaga, E. and Gruen, D. and Gruendl, R. A. and Holzapfel, W. L. and Honscheid, K. and James, D. J. and Keisler, R. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lima, M. and Marshall, J. L. and McDonald, M. and Melchior, P. and Miller, C. J. and Miquel, R. and Nord, B. and Ogando, R. and Omori, Y. and Plazas, A. A. and Rapetti, D. and Reichardt, C. L. and Romer, A. K. and Roodman, A. and Saliwanchik, B. R. and Sanchez, E. and Schubnell, M. and Sevilla-Noarbe, I. and Sheldon, E. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Stark, A. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Vieira, J. D. and Walker, A. R. and Whitehorn, N.},
abstractNote = {We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 sigma by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, (tau) over bar (e) = (3.75 +/- 0.89) x 10(-3). We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on (tau) over bar (e), and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales greater than or similar to 100 Mpc.},
doi = {10.1093/mnras/stw1455},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 461,
place = {United States},
year = 2016,
month = 6
}
  • Here, we detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance ofmore » $$4.2 \sigma$$ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey (DES) with CMB temperature maps from the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template we measure the average central optical depth of the cluster sample, $$\bar{\tau}_e = (3.75 \pm 0.89)\cdot 10^{-3}$$. We compare the extracted signal to realistic simulations and find good agreement with respect to the signal-to-noise, the constraint on $$\bar{\tau}_e$$, and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales $$ \gtrsim 100$$ Mpc.« less
  • We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2σ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, τ¯e=(3.75±0.89)×10 –3. We compare the extractedmore » signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on τ¯e, and the corresponding gas fraction. As a result, high-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales ≳100 Mpc.« less
  • Here, we detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2σ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample,more » $$\bar{τ}$$ e=(3.75±0.89)×10 -3$$\bar{τ}$$e=(3.75±0.89)×10 -3. Furthermore, we compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on $$\bar{τ}$$ e, and the corresponding gas fraction. Finally, high-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales ≳100 Mpc.« less
  • We study the contribution of the kinematic Sunyaev-Zel'dovich (kSZ) effect, generated by the warm-hot intergalactic medium, to the cosmic microwave background temperature anisotropies in the five-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We explore the concordance {lambda}CDM cosmological model, with and without this kSZ contribution, using a Markov chain Monte Carlo algorithm. Our model requires a single extra parameter to describe this new component. Our results show that the inclusion of the kSZ signal improves the fit to the data without significantly altering the best-fit cosmological parameters except {omega}{sub b} h {sup 2}. The improvement is localized at the lmore » {approx}> 500 multipoles. For the best-fit model, this extra component peaks at l {approx} 450 with an amplitude of 129 {mu}K{sup 2}, and represents 3.1% of the total power measured by WMAP. Nevertheless, at the 2{sigma} level a null kSZ contribution is still compatible with the data. Part of the detected signal could arise from unmasked point sources and/or Poissonianly distributed foreground residuals. A statistically more significant detection requires the wider frequency coverage and angular resolution of the forthcoming Planck mission.« less
  • Here, we present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariancemore » matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less