skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

Abstract

Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Some recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. Here, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [2];  [16];  [5];  [17] more »;  [18];  [19];  [16];  [20];  [21];  [22];  [23];  [24];  [25];  [2];  [16];  [26];  [27];  [28];  [12];  [3];  [29];  [30];  [25];  [31];  [5];  [32];  [5];  [5];  [5];  [33];  [34];  [26];  [35] « less
  1. Swansea Univ. (United Kingdom)
  2. Univ. of Nantes (France). Nantes School of Mines
  3. National Inst. of Nuclear Physics (INFN), Torino (Italy).
  4. Duke Univ., Durham, NC (United States)
  5. Univ. of Utrecht (Netherlands). Inst. for Subatomic Physics
  6. Technical Univ. of Munich, Garching (Germany). Dept. of Physics and Excellence Cluster Universe, Inst. for Advanced Study
  7. GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany). Research Division and Extreme Matter Inst.; Frankfurt Univ. (Germany). Inst. for Theoretical Physics
  8. GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany). Research Division and Extreme Matter Inst.; Univ. of Heidelberg (Germany). Physics Inst.
  9. National Inst. of Nuclear Physics (INFN), Bari (Italy). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  10. Technical Univ. of Munich, Garching (Germany). Dept. of Physics and Excellence Cluster Universe
  11. Univ. of Catania (Italy)
  12. Max Planck Inst. for Nuclear Physics, Heidelberg (Germany)
  13. Univ. of Belgrade (Serbia). Inst. of Physics
  14. Univ. of Santiago (Spain)
  15. Florida State Univ., Tallahassee, FL (United States)
  16. Ecole Polytechnique, Palaiseau (France). Leprince-Ringuet Lab.
  17. Nanjing Univ. of Science and Technology (China). Dept. of Applied Physics
  18. Univ. of Cape Town (South Africa). Dept. of Physics
  19. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  20. Central China Normal Univ., Wuhan (China). Key Lab. of Quark and Lepton Physics, Inst. of Particle Physics; Univ. of Bielefeld (Germany)
  21. National Inst. for Subatomic Physics, Amsterdam (Netherlands)
  22. Univ. of Bern (Switzerland). Inst. for Theoretical Physics
  23. National Inst. of Nuclear Physics (INFN), Frascati (Italy)
  24. Univ. of Utrecht (Netherlands). Inst. for Subatomic Physics; National Inst. for Subatomic Physics, Amsterdam (Netherlands)
  25. Univ. of Sao Paulo (Brazil)
  26. Univ. of Utrecht (Netherlands). Inst. for Subatomic Physics; Univ. of Sao Paulo (Brazil)
  27. Brookhaven National Lab. (BNL), Upton, NY (United States)
  28. Ruprecht Karls Univ., Heidelberg (Germany). Inst. for Theoretical Physics
  29. Frankfurt Univ. (Germany). Inst. for Theoretical Physics
  30. Univ. of Heidelberg (Germany). Physics Inst.
  31. Frankfurt Inst. for Advanced Studies (FIAS), Frankfurt (Germany); Inst. of Sciences (IEEC-CSIC), Bellaterra (Spain)
  32. The Doua, Villeurbanne (France). Inst. of Nuclear Physics
  33. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  34. Univ. of Illinois, Chicago, IL (United States)
  35. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1392246
Report Number(s):
BNL-114270-2017-JA
Journal ID: ISSN 1434-6001; R&D Project: KB0301020; KB0301020
Grant/Contract Number:
SC0012704; FG02-05ER41367
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
European Physical Journal. A
Additional Journal Information:
Journal Volume: 53; Journal Issue: 5; Journal ID: ISSN 1434-6001
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Aarts, G., Aichelin, J., Allton, C., Arnaldi, R., Bass, S. A., Bedda, C., Brambilla, N., Bratkovskaya, E., Braun-Munzinger, P., Bruno, G. E., Dahms, T., Das, S. K., Dembinski, H., Djordjevic, M., Ferreiro, E., Frawley, A., Gossiaux, P. -B., Granier de Cassagnac, R., Grelli, A., He, M., Horowitz, W. A., Innocenti, G. M., Jo, M., Kaczmarek, O., Kuijer, P. G., Laine, M., Lombardo, M. P., Mischke, A., Munhoz, M. G., Nahrgang, M., Nguyen, M., Oliveira da Silva, A. C., Petreczky, P., Rothkopf, A., Schmelling, M., Scomparin, E., Song, T., Stachel, J., Suaide, A. A. P., Tolos, L., Trzeciak, B., Uras, A., van Doremalen, L., Vermunt, L., Vigolo, S., Xu, N., Ye, Z., Zanoli, H. J. C., and Zhuang, P. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?. United States: N. p., 2017. Web. doi:10.1140/epja/i2017-12282-9.
Aarts, G., Aichelin, J., Allton, C., Arnaldi, R., Bass, S. A., Bedda, C., Brambilla, N., Bratkovskaya, E., Braun-Munzinger, P., Bruno, G. E., Dahms, T., Das, S. K., Dembinski, H., Djordjevic, M., Ferreiro, E., Frawley, A., Gossiaux, P. -B., Granier de Cassagnac, R., Grelli, A., He, M., Horowitz, W. A., Innocenti, G. M., Jo, M., Kaczmarek, O., Kuijer, P. G., Laine, M., Lombardo, M. P., Mischke, A., Munhoz, M. G., Nahrgang, M., Nguyen, M., Oliveira da Silva, A. C., Petreczky, P., Rothkopf, A., Schmelling, M., Scomparin, E., Song, T., Stachel, J., Suaide, A. A. P., Tolos, L., Trzeciak, B., Uras, A., van Doremalen, L., Vermunt, L., Vigolo, S., Xu, N., Ye, Z., Zanoli, H. J. C., & Zhuang, P. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?. United States. doi:10.1140/epja/i2017-12282-9.
Aarts, G., Aichelin, J., Allton, C., Arnaldi, R., Bass, S. A., Bedda, C., Brambilla, N., Bratkovskaya, E., Braun-Munzinger, P., Bruno, G. E., Dahms, T., Das, S. K., Dembinski, H., Djordjevic, M., Ferreiro, E., Frawley, A., Gossiaux, P. -B., Granier de Cassagnac, R., Grelli, A., He, M., Horowitz, W. A., Innocenti, G. M., Jo, M., Kaczmarek, O., Kuijer, P. G., Laine, M., Lombardo, M. P., Mischke, A., Munhoz, M. G., Nahrgang, M., Nguyen, M., Oliveira da Silva, A. C., Petreczky, P., Rothkopf, A., Schmelling, M., Scomparin, E., Song, T., Stachel, J., Suaide, A. A. P., Tolos, L., Trzeciak, B., Uras, A., van Doremalen, L., Vermunt, L., Vigolo, S., Xu, N., Ye, Z., Zanoli, H. J. C., and Zhuang, P. 2017. "Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?". United States. doi:10.1140/epja/i2017-12282-9. https://www.osti.gov/servlets/purl/1392246.
@article{osti_1392246,
title = {Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?},
author = {Aarts, G. and Aichelin, J. and Allton, C. and Arnaldi, R. and Bass, S. A. and Bedda, C. and Brambilla, N. and Bratkovskaya, E. and Braun-Munzinger, P. and Bruno, G. E. and Dahms, T. and Das, S. K. and Dembinski, H. and Djordjevic, M. and Ferreiro, E. and Frawley, A. and Gossiaux, P. -B. and Granier de Cassagnac, R. and Grelli, A. and He, M. and Horowitz, W. A. and Innocenti, G. M. and Jo, M. and Kaczmarek, O. and Kuijer, P. G. and Laine, M. and Lombardo, M. P. and Mischke, A. and Munhoz, M. G. and Nahrgang, M. and Nguyen, M. and Oliveira da Silva, A. C. and Petreczky, P. and Rothkopf, A. and Schmelling, M. and Scomparin, E. and Song, T. and Stachel, J. and Suaide, A. A. P. and Tolos, L. and Trzeciak, B. and Uras, A. and van Doremalen, L. and Vermunt, L. and Vigolo, S. and Xu, N. and Ye, Z. and Zanoli, H. J. C. and Zhuang, P.},
abstractNote = {Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Some recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. Here, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma.},
doi = {10.1140/epja/i2017-12282-9},
journal = {European Physical Journal. A},
number = 5,
volume = 53,
place = {United States},
year = 2017,
month = 5
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R{sub AA}), provides information on both cold- and hot-nuclear-matter effects. Midrapidity heavy-flavor R{sub AA} measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Determine transverse-momentum (p{sub T}) spectra and the corresponding R{sub AA} for muons frommore » heavy-flavor meson decay in p + p and Cu + Cu collisions at {radical}s{sub NN} = 200 GeV and y = 1.65. Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p{sub T} spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. The charm-production cross section in p + p collisions at {radical}s = 200 GeV, integrated over p{sub T} and in the rapidity range 1.4 < y < 1.9, is found to be d{sigma}{sub cc}{sup -}/dy = 0.139 {+-} 0.029 (stat){sub -0.058}{sup +0.051} (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R{sub AA} for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p{sub T} < 4 GeV/c. Suppression relative to binary-collision scaling (R{sub AA} < 1) increases with centrality. Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.« less
  • We study the photon-triggered light and heavy meson production in both p+p and A+A collisions. We find that a parton energy loss approach that successfully describes inclusive hadron attenuation in nucleus-nucleus reactions at RHIC can simultaneously describe well the experimentally determined photon-triggered light hadron fragmentation functions. Using the same framework, we generalize our formalism to study photon-triggered heavy meson production. We find that the nuclear modification of photon-tagged heavy meson fragmentation functions in A+A collision is very different from that of the photon-tagged light hadron case. While photon-triggered light hadron fragmentation functions in A+A collisions are suppressed relative to p+p,more » photon-triggered heavy meson fragmentation functions can be either enhanced or suppressed, depending on the specific kinematic region. The anticipated smaller energy loss for b-quarks manifests itself as a flatter photon-triggered B-meson fragmentation function compared to that for the D-meson case. We make detailed predictions for both RHIC and LHC energies. We conclude that a comprehensive comparative study of both photon-tagged light and heavy meson production can provide new insights in the details of the jet quenching mechanism.« less
  • Cited by 19
  • We estimate freezeout conditions for [ital s], [ital c], and [ital b] quarks in high energy nuclear collisions. Freezeout is due either to loss of thermal contact, or to particles wandering'' out of the region of hot matter. We then develop a thermal recombination model in which both single-particle (quark and antiquark) and two-particle (quark-antiquark) densities are conserved. Conservation of two-particle densities is necessary because quarks and antiquarks are always produced in coincidence, so that the local two-particle density can be much larger than the product of the single-particle densities. We use the freezeout conditions and recombination model to discussmore » heavy resonance production at zero baryon density in high energy nuclear collisions.« less