skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetically Recoverable and Reusable Antimicrobial Nanocomposite Based on Activated Carbon, Magnetite Nanoparticles, and Silver Nanoparticles for Water Disinfection

Abstract

Recent advancements in nanotechnology have led to the development of innovative, low-cost and highly efficient water disinfection technologies that may replace or enhance the conventional methods. In this study, we introduce a novel procedure for preparing a bifunctional activated carbon nanocomposite in which nanoscale-sized magnetic magnetite and antimicrobial silver nanoparticles are incorporated (MACAg). The antimicrobial efficacy of the nanocomposite was tested against Escherichia coli (E. coli). MACAg (0.5 g, 0.04% Ag) was found to remove and kill 10 6–10 7 CFU (colony-forming units) in 30 min via a shaking test and the removing and killing rate of the nanocomposites increased with increasing silver content and decreased with increasing CFU. The inhibition zone tests revealed, among the relevant components, only Ag nanoparticles and Ag + ions showed antimicrobial activities. The MACAg was easily recoverable from treated water due to its magnetic properties and was able to remove and kill 10 6 CFU after multiple-repeated use. The MACAg nanocomposite also demonstrated its feasibility and applicability for treating a surface water containing 10 5 CFU. Combining low cost due to easy synthesis, recoverability, and reusability with high antimicrobial efficiency, MACAg may provide a promising water disinfection technology that will find wide applications.

Authors:
 [1];  [1];  [2];  [1];  [1];  [3]
  1. United States Merchant Marine Academy, Kings Point, NY (United States). Math & Science Department
  2. Johns Hopkins Univ., Baltimore, MD (United States). Neuroscience Department
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Instrumentation Division
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1392216
Report Number(s):
BNL-114154-2017-JA
Journal ID: ISSN 2411-5134; KA
Grant/Contract Number:
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Inventions
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2411-5134
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 36 MATERIALS SCIENCE; 54 ENVIRONMENTAL SCIENCES; silver nanoparticles; magnetite nanoparticles; activated carbon; nanocomposites; nanoadsorbents; water disinfection; water treatment; magnetic; antimicrobial; environmental applications

Citation Formats

Furlan, Ping, Fisher, Adam, Furlan, Alexander, Melcer, Michael, Shinn, David, and Warren, John. Magnetically Recoverable and Reusable Antimicrobial Nanocomposite Based on Activated Carbon, Magnetite Nanoparticles, and Silver Nanoparticles for Water Disinfection. United States: N. p., 2017. Web. doi:10.3390/inventions2020010.
Furlan, Ping, Fisher, Adam, Furlan, Alexander, Melcer, Michael, Shinn, David, & Warren, John. Magnetically Recoverable and Reusable Antimicrobial Nanocomposite Based on Activated Carbon, Magnetite Nanoparticles, and Silver Nanoparticles for Water Disinfection. United States. doi:10.3390/inventions2020010.
Furlan, Ping, Fisher, Adam, Furlan, Alexander, Melcer, Michael, Shinn, David, and Warren, John. Tue . "Magnetically Recoverable and Reusable Antimicrobial Nanocomposite Based on Activated Carbon, Magnetite Nanoparticles, and Silver Nanoparticles for Water Disinfection". United States. doi:10.3390/inventions2020010. https://www.osti.gov/servlets/purl/1392216.
@article{osti_1392216,
title = {Magnetically Recoverable and Reusable Antimicrobial Nanocomposite Based on Activated Carbon, Magnetite Nanoparticles, and Silver Nanoparticles for Water Disinfection},
author = {Furlan, Ping and Fisher, Adam and Furlan, Alexander and Melcer, Michael and Shinn, David and Warren, John},
abstractNote = {Recent advancements in nanotechnology have led to the development of innovative, low-cost and highly efficient water disinfection technologies that may replace or enhance the conventional methods. In this study, we introduce a novel procedure for preparing a bifunctional activated carbon nanocomposite in which nanoscale-sized magnetic magnetite and antimicrobial silver nanoparticles are incorporated (MACAg). The antimicrobial efficacy of the nanocomposite was tested against Escherichia coli (E. coli). MACAg (0.5 g, 0.04% Ag) was found to remove and kill 106–107 CFU (colony-forming units) in 30 min via a shaking test and the removing and killing rate of the nanocomposites increased with increasing silver content and decreased with increasing CFU. The inhibition zone tests revealed, among the relevant components, only Ag nanoparticles and Ag+ ions showed antimicrobial activities. The MACAg was easily recoverable from treated water due to its magnetic properties and was able to remove and kill 106 CFU after multiple-repeated use. The MACAg nanocomposite also demonstrated its feasibility and applicability for treating a surface water containing 105 CFU. Combining low cost due to easy synthesis, recoverability, and reusability with high antimicrobial efficiency, MACAg may provide a promising water disinfection technology that will find wide applications.},
doi = {10.3390/inventions2020010},
journal = {Inventions},
number = 2,
volume = 2,
place = {United States},
year = {Tue Jun 06 00:00:00 EDT 2017},
month = {Tue Jun 06 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • In this article, we describe a 2 h introductory laboratory procedure that prepares a novel magnetic antimicrobial activated carbon nanocomposite in which nanoscale sized magnetite and silver particles are incorporated (MACAg). The MACAg nanocomposite has achieved the synergistic properties derived from its components and demonstrated its applicability as an effective and recoverable antimicrobial agent for water disinfection. The principle is successfully illustrated by a significant reduction in the number of microbes in an Escherichia coli (E. coli) solution of 2 × 10 6 colony forming units following its treatment with MACAg for 10 min. The exercise allows the college studentsmore » to (1) be introduced to an exciting class of advanced materials, known as nanocomposites, at an early stage, (2) gain working experiences at nanochemistry–microbiology interface, and (3) see the use and experience the fun of chemistry. The experiment uses readily available materials, can be run in a general or introductory chemistry laboratory environment, and is well received and enjoyed by the students. Lastly, the experiment is also suitable for advanced high school students.« less
  • Silver and platinum were incorporated within diamondlike carbon (DLC) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films reveals that the metals self-assemble into particulate nanocomposite structures. Nanoindentation testing has shown that diamondlike carbon-silver films exhibit hardness and Young's modulus values of approximately 37 GPa and 333 GPa, respectively. DLC-silver-platinum films exhibited antimicrobial properties against Staphylococcus bacteria. Diamondlike carbon-biofunctional metal nanocomposite films have a variety of potential medical and antimicrobial applications.
  • Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be themore » active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.« less
  • In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO{sub 3}:H{sub 2}SO{sub 4} (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° andmore » 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24 h in shaker incubator with percentage of inhibition approaching 100%.« less