skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

Technical Report ·
DOI:https://doi.org/10.2172/1391905· OSTI ID:1391905
 [1]
  1. Univ. of California, Irvine, CA (United States)

This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh-purity pyrite single crystals, proved the existence of a conductive, hole-rich inversion layer at the surface of n-type pyrite crystals and established that the inversion layer is the likely reason for pyrite’s low VOC; (7) developed several surface passivation treatments to reduce the surface hole density, but not enough to expect a significant increase in VOC; (8) by controlling the single crystal growth conditions, reduced the concentration of near-surface deep donors by a factor of ~1000, which should be sufficient to avoid thermionic field emission (i.e., tunneling) across the pyrite surface and thereby increase pyrite VOC. Recent project results will be described in forthcoming peer-reviewed publications.

Research Organization:
Univ. of California, Irvine, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
EE0005324
OSTI ID:
1391905
Report Number(s):
DOE-UCI-05324
Country of Publication:
United States
Language:
English