skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment

Abstract

Increasing the efficiency of coal power plants requires raising the operating temperature above 650°C. However, coal ash can severely attack alloy materials at high temperature. For example, the corrosion rates of commercial Fe- and Ni-based alloys are generally greater than 2 mm/year at 750°C in the gas environment of oxy-fuel combustion. Thus, a critical study is needed to determine the effect of the constituents in the ash on corrosion and find an approach to reduce the corrosion rates in an ash-laden environment at high temperature. The role of CaO in the ash (typical of U.S. Western coal ash) has been investigated in laboratory exposure environments with various structural alloys. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, and the cracking of scales for the alloys after exposure at 750°C. The thermal stability of K3Al(SO4)3 under the environment of oxy-fuel combustion was determined by thermogravimetric analysis and differential thermal analysis. The reaction of this low melting temperature salt with the CaO-containing ash is discussed. In addition, we performed synchrotron nanobeam X-ray analysis to study the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are usedmore » to address the role of CaO in ash in the long-term corrosion performance of alloys.« less

Authors:
ORCiD logo; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1391827
DOE Contract Number:
AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Fuel; Journal Volume: 178; Journal Issue: C
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Ash corrosion; CaO; Long term test; Oxy-fuel

Citation Formats

Zeng, Z., Natesan, K., Cai, Z., and Rink, D. L. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment. United States: N. p., 2016. Web. doi:10.1016/j.fuel.2016.02.077.
Zeng, Z., Natesan, K., Cai, Z., & Rink, D. L. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment. United States. doi:10.1016/j.fuel.2016.02.077.
Zeng, Z., Natesan, K., Cai, Z., and Rink, D. L. Mon . "Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment". United States. doi:10.1016/j.fuel.2016.02.077.
@article{osti_1391827,
title = {Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment},
author = {Zeng, Z. and Natesan, K. and Cai, Z. and Rink, D. L.},
abstractNote = {Increasing the efficiency of coal power plants requires raising the operating temperature above 650°C. However, coal ash can severely attack alloy materials at high temperature. For example, the corrosion rates of commercial Fe- and Ni-based alloys are generally greater than 2 mm/year at 750°C in the gas environment of oxy-fuel combustion. Thus, a critical study is needed to determine the effect of the constituents in the ash on corrosion and find an approach to reduce the corrosion rates in an ash-laden environment at high temperature. The role of CaO in the ash (typical of U.S. Western coal ash) has been investigated in laboratory exposure environments with various structural alloys. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, and the cracking of scales for the alloys after exposure at 750°C. The thermal stability of K3Al(SO4)3 under the environment of oxy-fuel combustion was determined by thermogravimetric analysis and differential thermal analysis. The reaction of this low melting temperature salt with the CaO-containing ash is discussed. In addition, we performed synchrotron nanobeam X-ray analysis to study the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are used to address the role of CaO in ash in the long-term corrosion performance of alloys.},
doi = {10.1016/j.fuel.2016.02.077},
journal = {Fuel},
number = C,
volume = 178,
place = {United States},
year = {Mon Aug 01 00:00:00 EDT 2016},
month = {Mon Aug 01 00:00:00 EDT 2016}
}
  • The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 A degrees C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 A degrees C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate weremore » also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.« less
  • The oxidation behavior of a number of Fe–Cr- and Ni–Cr-based alloys was studied in atmospheres relevant to oxyfuel combustion at 650 °C. Oxidation was greatly enhanced in ferritic model alloys exposed in low p(O{sub 2}) CO{sub 2} + 30%H{sub 2}O and Ar + 30%H{sub 2}O gases. Rapidly growing iron oxides appear to be porous and gas permeable. Transition from non-protective to protective oxidation occurs on alloys with higher Cr contents between 13.5 and 22 wt% in H{sub 2}O. Excess oxygen, usually found in the actual oxyfuel combustion environments, disrupts the selective oxidation of Fe–Cr alloys by accelerating vaporization of early-formedmore » Cr{sub 2}O{sub 3} in combination with accelerated chromia growth induced by the H{sub 2}O. Rapid Cr consumption leads to the nucleation and rapid growth of iron oxides. On the contrary, Ni–Cr alloys are less affected by the presence of H{sub 2}O and excess O{sub 2}. The difference between Fe–Cr and Ni–Cr alloys is not clear but is postulated to involve less acceleration of chromia growth by water vapor for the latter group of alloys.« less
  • New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphousmore » metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been quantified through measurement of the open-circuit corrosion potential (E{sub corr}), the breakdown potential (E{sub crit}) and the repassivation potential (E{sub rp}). The greater the difference between the open-circuit corrosion potential and the repassivation potential ({Delta}E), the more resistant a material is to modes of localized corrosion such as pitting and crevice corrosion. Cyclic polarization (CP) was used as a means of measuring the critical potential (E{sub crit}) relative to the open-circuit corrosion potential (E{sub corr}). Linear polarization (LP) has been used to determine the corrosion current (i{sub corr}) and the corresponding corrosion rate. Other aspects of the materials will also be discussed, as well as potential applications.« less