skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides

Abstract

We present a new class of high capacity cation-disordered materials, lithium-excess nickel titanium molybdenum oxides, which deliver a capacity up to 250 mAh/g. These materials were designed from percolation theory which predicts lithium diffusion to become facile in cation-disordered oxides as the lithium-excess level (x > 0 in Li1+xTM1-xO2) increases. The reversible capacity and rate capability in these compounds are shown to considerably improve with lithium excess. In particular, Li1.2Ni1/3Ti1/3Mo2/15O2 delivers up to 250 mAh/g and 750Wh/kg (~3080 Wh/l) at 10 mA/g. Combining in situ X-ray diffraction, electron energy loss spectroscopy, and X-ray absorption near edge spectroscopy, we propose that first charging Li1.2Ni1/3Ti1/3Mo2/15O2 to 4.8 V occurs with Ni2+/Ni~3+ oxidation, oxygen loss, and oxygen oxidation in this sequence, after which Mo6+ and Ti4+ can be reduced upon discharge. Furthermore, we discuss how oxygen loss with lattice densification can affect lithium diffusion in the material by decreasing the Li-excess level. From this understanding, strategies for further improvements are proposed, setting new guidelines for the design of high performance cation-disordered oxides for rechargeable lithium batteries.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1391694
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 11; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English

Citation Formats

Lee, Jinhyuk, Seo, Dong-Hwa, Balasubramanian, Mahalingam, Twu, Nancy, Li, Xin, and Ceder, Gerbrand. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. United States: N. p., 2015. Web. doi:10.1039/c5ee02329g.
Lee, Jinhyuk, Seo, Dong-Hwa, Balasubramanian, Mahalingam, Twu, Nancy, Li, Xin, & Ceder, Gerbrand. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. United States. doi:10.1039/c5ee02329g.
Lee, Jinhyuk, Seo, Dong-Hwa, Balasubramanian, Mahalingam, Twu, Nancy, Li, Xin, and Ceder, Gerbrand. Thu . "A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides". United States. doi:10.1039/c5ee02329g.
@article{osti_1391694,
title = {A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides},
author = {Lee, Jinhyuk and Seo, Dong-Hwa and Balasubramanian, Mahalingam and Twu, Nancy and Li, Xin and Ceder, Gerbrand},
abstractNote = {We present a new class of high capacity cation-disordered materials, lithium-excess nickel titanium molybdenum oxides, which deliver a capacity up to 250 mAh/g. These materials were designed from percolation theory which predicts lithium diffusion to become facile in cation-disordered oxides as the lithium-excess level (x > 0 in Li1+xTM1-xO2) increases. The reversible capacity and rate capability in these compounds are shown to considerably improve with lithium excess. In particular, Li1.2Ni1/3Ti1/3Mo2/15O2 delivers up to 250 mAh/g and 750Wh/kg (~3080 Wh/l) at 10 mA/g. Combining in situ X-ray diffraction, electron energy loss spectroscopy, and X-ray absorption near edge spectroscopy, we propose that first charging Li1.2Ni1/3Ti1/3Mo2/15O2 to 4.8 V occurs with Ni2+/Ni~3+ oxidation, oxygen loss, and oxygen oxidation in this sequence, after which Mo6+ and Ti4+ can be reduced upon discharge. Furthermore, we discuss how oxygen loss with lattice densification can affect lithium diffusion in the material by decreasing the Li-excess level. From this understanding, strategies for further improvements are proposed, setting new guidelines for the design of high performance cation-disordered oxides for rechargeable lithium batteries.},
doi = {10.1039/c5ee02329g},
journal = {Energy & Environmental Science},
issn = {1754-5692},
number = 11,
volume = 8,
place = {United States},
year = {2015},
month = {1}
}

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Oxidation states of titanium in bulk barium titanates and in (100) fiber-textured (BaxSr1−x)Ti1+yO3+z thin films
journal, November 2001

  • Stemmer, S.; Höche, T.; Keding, R.
  • Applied Physics Letters, Vol. 79, Issue 19
  • DOI: 10.1063/1.1418036

Preparation of electrochemically active α-LiFeO2 at low temperature
journal, December 1998


Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Li + intercalation in isostructural Li 2 VO 3 and Li 2 VO 2 F with O 2− and mixed O 2− /F anions
journal, January 2015

  • Chen, Ruiyong; Ren, Shuhua; Yavuz, Murat
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 26
  • DOI: 10.1039/C5CP02505B

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials
journal, September 2014

  • Oh, Pilgun; Myeong, Seungjun; Cho, Woongrae
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502980k

Improved Voltage and Cycling for Li + Intercalation in High-Capacity Disordered Oxyfluoride Cathodes
journal, June 2015


Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries
journal, January 2013

  • Qiao, Q. Q.; Zhang, H. Z.; Li, G. R.
  • Journal of Materials Chemistry A, Vol. 1, Issue 17
  • DOI: 10.1039/c3ta00028a

Synthesis and electrochemistry of cubic rocksalt Li–Ni–Ti–O compounds in the phase diagram of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2
journal, October 2008


Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Lithium Diffusion in Layered Li[sub x]CoO[sub 2]
journal, January 1999

  • Van der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391130

LiFeO 2 -Incorporated Li 2 MoO 3 as a Cathode Additive for Lithium-Ion Battery Safety
journal, July 2012

  • Park, Kyu-Sung; Im, Dongmin; Benayad, Anass
  • Chemistry of Materials, Vol. 24, Issue 14
  • DOI: 10.1021/cm300505y

Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction
journal, May 2013


Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material
journal, February 2015

  • Zheng, Jianming; Xu, Pinghong; Gu, Meng
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm5045978

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

A high rate Li-rich layered MNC cathode material for lithium-ion batteries
journal, January 2015

  • Ates, Mehmet Nurullah; Mukerjee, Sanjeev; Abraham, K. M.
  • RSC Advances, Vol. 5, Issue 35
  • DOI: 10.1039/C4RA17235C

Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries
journal, July 2012

  • Hong, Jihyun; Lim, Hee-Dae; Lee, Minah
  • Chemistry of Materials, Vol. 24, Issue 14
  • DOI: 10.1021/cm3005634

Effect of LiCoO[sub 2] Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries
journal, January 2009

  • Jo, Minki; Hong, Young-Sik; Choo, Jaebum
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3111031

Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li + Intercalation Storage
journal, February 2015

  • Chen, Ruiyong; Ren, Shuhua; Knapp, Michael
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201401814

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure
journal, August 2011

  • Barpanda, P.; Ati, M.; Melot, B. C.
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3093

Lithium-Rich Rock-Salt-Type Vanadate as Energy Storage Cathode: Li 2– x VO 3
journal, December 2011

  • Pralong, Valerie; Gopal, Venkatesh; Caignaert, Vincent
  • Chemistry of Materials, Vol. 24, Issue 1
  • DOI: 10.1021/cm203281q

Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2
journal, December 2014

  • Twu, Nancy; Li, Xin; Urban, Alexander
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl5040754

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Designing the next generation high capacity battery electrodes
journal, January 2014

  • Yu, H. -C.; Ling, C.; Bhattacharya, J.
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43154a

New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study
journal, June 2012

  • Kim, Hyungsub; Park, Inchul; Seo, Dong-Hwa
  • Journal of the American Chemical Society, Vol. 134, Issue 25
  • DOI: 10.1021/ja3038646

Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2
journal, August 2013


Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries
journal, April 2012

  • Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200224h

In Situ X-ray Absorption Spectroscopic Study on LiNi 0.5 Mn 0.5 O 2 Cathode Material during Electrochemical Cycling
journal, August 2003

  • Yoon, Won-Sub; Grey, Clare P.; Balasubramanian, Mahalingam
  • Chemistry of Materials, Vol. 15, Issue 16
  • DOI: 10.1021/cm030220m

Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li Ion Batteries
journal, March 2014

  • Koga, H.; Croguennec, L.; Ménétrier, M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp412197z

Understanding Li Diffusion in Li-Intercalation Compounds
journal, May 2012

  • Van der Ven, Anton; Bhattacharya, Jishnu; Belak, Anna A.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200329r

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes
journal, May 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400478

Theoretical capacity achieved in a LiMn 0.5 Fe 0.4 Mg 0.1 BO 3 cathode by using topological disorder
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Ceder, Gerbrand
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C5EE00930H

The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO 3
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Chen, Hailong
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401916

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m