skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Aging and Degradation.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the CEA/EDF Collaboration meeting in Paris, France.
Country of Publication:
United States

Citation Formats

Enos, David. Materials Aging and Degradation.. United States: N. p., 2016. Web.
Enos, David. Materials Aging and Degradation.. United States.
Enos, David. Thu . "Materials Aging and Degradation.". United States. doi:.
title = {Materials Aging and Degradation.},
author = {Enos, David},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Material issues can be the limiting factor for the operation of nuclear power plants. There is growing interest in new and improved philosophies and methodolgies for plant life management, which include the migration from reliance on periodic inservice inspection to include condition-based maintenance. A further step in the development of plant management is the move from proactive responses based on ISI to become proactive, through the investigation of the potential for implementation of a proactive management of materials degradation program and its potential impact on the managements of LWRs
  • The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundations for defining proactive actions to manage degradation of materials in light water reactors (LWRs). The current focus is existing plants; however, if applied to new construction, there is potential to better monitor and manage plants throughout their life cycle. This paper discusses the NRC’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems, and components (SSC).
  • As the US fleet of light water reactors ages, the risks of operation might be expected to increase. Although probabilistic risk assessment has proven a critical resource in risk-informed regulatory decision-making, limitations in current methods and models have constrained their prospective value in reactor aging management. These limitations stem principally from the use of static component failure rate models (which do not allow the impact of component aging on failure rates to be represented) and a very limited treatment of passive components (which would be expected to have an increasingly significant risk contribution in an aging system). Yet, a PRAmore » captures a substantial knowledge base that could be of significant value in addressing plant aging. In this paper we will describe a methodology and a new class of risk importance measures that allow the use of an existing PRA model to support the management of plant aging, the prioritization of improvements to non-destructive examination and monitoring techniques, and the establishment of research emphases in materials science. This methodology makes use of data resources generated under the USNRC Proactive Management of Materials Degradation program which addresses the anticipated effects of numerous aging degradation mechanisms on a wide variety of component types.« less
  • Abstract not provided.