skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

Abstract

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolutionmore » of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less

Authors:
 [1];  [2];  [1]; ORCiD logo [1];  [1];  [2];  [3];  [1];  [1];  [4];  [5];  [1];  [3]; ORCiD logo [6];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [6] more »;  [1];  [7];  [7];  [1];  [4]; ORCiD logo [1] « less
  1. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  2. Univ. of Illinois, Urbana, IL (United States)
  3. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  4. National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  5. National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Istituto Nazionale di Fisica Nucleare (INFN), Milan (Italy)
  6. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  7. Lund Univ. (Sweden)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1390613
Alternate Identifier(s):
OSTI ID: 1361887
Grant/Contract Number:
AC02-06CH11357; FG02-06ER46285
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 88; Journal Issue: 5; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Doriese, W. B., Abbamonte, P., Alpert, B. K., Bennett, D. A., Denison, E. V., Fang, Y., Fischer, D. A., Fitzgerald, C. P., Fowler, J. W., Gard, J. D., Hays-Wehle, J. P., Hilton, G. C., Jaye, C., McChesney, J. L., Miaja-Avila, L., Morgan, K. M., Joe, Y. I., O’Neil, G. C., Reintsema, C. D., Rodolakis, F., Schmidt, D. R., Tatsuno, H., Uhlig, J., Vale, L. R., Ullom, J. N., and Swetz, D. S. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science. United States: N. p., 2017. Web. doi:10.1063/1.4983316.
Doriese, W. B., Abbamonte, P., Alpert, B. K., Bennett, D. A., Denison, E. V., Fang, Y., Fischer, D. A., Fitzgerald, C. P., Fowler, J. W., Gard, J. D., Hays-Wehle, J. P., Hilton, G. C., Jaye, C., McChesney, J. L., Miaja-Avila, L., Morgan, K. M., Joe, Y. I., O’Neil, G. C., Reintsema, C. D., Rodolakis, F., Schmidt, D. R., Tatsuno, H., Uhlig, J., Vale, L. R., Ullom, J. N., & Swetz, D. S. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science. United States. doi:10.1063/1.4983316.
Doriese, W. B., Abbamonte, P., Alpert, B. K., Bennett, D. A., Denison, E. V., Fang, Y., Fischer, D. A., Fitzgerald, C. P., Fowler, J. W., Gard, J. D., Hays-Wehle, J. P., Hilton, G. C., Jaye, C., McChesney, J. L., Miaja-Avila, L., Morgan, K. M., Joe, Y. I., O’Neil, G. C., Reintsema, C. D., Rodolakis, F., Schmidt, D. R., Tatsuno, H., Uhlig, J., Vale, L. R., Ullom, J. N., and Swetz, D. S. Mon . "A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science". United States. doi:10.1063/1.4983316. https://www.osti.gov/servlets/purl/1390613.
@article{osti_1390613,
title = {A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science},
author = {Doriese, W. B. and Abbamonte, P. and Alpert, B. K. and Bennett, D. A. and Denison, E. V. and Fang, Y. and Fischer, D. A. and Fitzgerald, C. P. and Fowler, J. W. and Gard, J. D. and Hays-Wehle, J. P. and Hilton, G. C. and Jaye, C. and McChesney, J. L. and Miaja-Avila, L. and Morgan, K. M. and Joe, Y. I. and O’Neil, G. C. and Reintsema, C. D. and Rodolakis, F. and Schmidt, D. R. and Tatsuno, H. and Uhlig, J. and Vale, L. R. and Ullom, J. N. and Swetz, D. S.},
abstractNote = {We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.},
doi = {10.1063/1.4983316},
journal = {Review of Scientific Instruments},
number = 5,
volume = 88,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 3
  • The x-ray spectrometer (XRS) instrument is a revolutionary nondispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare XRS microcalorimeter spectrometer at the EBIT-I and SuperEBIT facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolving power. The XRS microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06 K and by carefully engineering the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels inmore » a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration 'library' for the Astro-E2 observatory.« less
  • The International X-Ray Observatory (IXO) is under formulation by NASA, ESA and JAXA for deployment in 2022. IXO emerged over the last 18 months as the NASA Constellation-X and ESA/JAXA X-Ray Evolving Universe Spectrometer (XEUS) missions were combined. The driving performance requirements for the X-Ray Microcalorimeter Spectrometer (XMS) are a spectral resolution of 2.5 eV over the central 2'x2' in the 0.3-7.0 keV band, and 10 eV to the edge of the 5'x5' field of view (FOV). The XMS is now based on a microcalorimeter array of Transition-Edge Sensor (TES) thermometers with Au/Bi absorbers and a SQUID MUX readout. Onemore » of the concepts studied as part of the mission formulation has a core 40x40 array corresponding to a 2'x2' FOV with 3'' pixels surrounded by an outer, annular 52x52 array of 6'' pixels that extends the field of view to 5.4'x5.4' with better than 10 eV resolution. There are several options for implementing the readout and cooling system of the XMS under study in the US, Europe and Japan. The ADR system will have from two to five stages depending on the performance of the cryocooler. Mechanical coolers with sufficient cooling power at 4K are available now, and {approx}2K coolers are under development. In this paper we give an overview of the XMS instrument, and some of the tradeoffs to be addressed for this observatory instrument.« less
  • We have developed a high-resolution microcalorimeter energy-dispersive spectrometer (EDS) at NIST that provides improved x-ray microanalysis of contaminant particles and defects important to the semiconductor industry. Using our microcalorimeter EDS mounted on a scanning electron microscope (SEM), we have analyzed a variety of specific sized particles on Si wafers, including 0.3 {mu}m diameter W particles and 0.1 {mu}m diameter Al{sub 2}O{sub 3} particles. To compare the particle analysis capabilities of microcalorimeter EDS to that of semiconductor EDS and Auger electron spectroscopy (AES), we report measurements of the Al-K{alpha}/Si-K{alpha} x-ray peak intensity ratio for 0.3 {mu}m diameter Al{sub 2}O{sub 3} particlesmore » on Si as a function of electron beam energy. We also demonstrate the capability of microcalorimeter EDS for chemical shift measurements.« less