skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

Abstract

Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similar transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolizationmore » location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material using formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.« less

Authors:
 [1]
  1. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1389968
Report Number(s):
LLNL-TH-735173
DOE Contract Number:
AC52-07NA27344
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Kaeser, Cynthia Jeanne. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies. United States: N. p., 2017. Web. doi:10.2172/1389968.
Kaeser, Cynthia Jeanne. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies. United States. doi:10.2172/1389968.
Kaeser, Cynthia Jeanne. 2017. "Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies". United States. doi:10.2172/1389968. https://www.osti.gov/servlets/purl/1389968.
@article{osti_1389968,
title = {Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies},
author = {Kaeser, Cynthia Jeanne},
abstractNote = {Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similar transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolization location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material using formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.},
doi = {10.2172/1389968},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 7
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • Lack of reliable epidemiological data on long term health effects of aerosols is due in part to inadequacy of sampling procedures and the attendant doubt regarding the validity of the concentrations measured. Differential particle size has been widely accepted and studied as a major potential biasing effect in the sampling of such aerosols. However, relatively little has been done to study the effect of electrostatic particle charge on aerosol sampling. The objective of this research was to investigate the possible biasing effects of differential electrostatic charge, particle size and their interaction on the sampling accuracy of standard aerosol measuring methodologies.more » Field studies were first conducted to determine the levels and variability of aerosol particle size and charge at two manufacturing facilities making acrylic powder. The field work showed that the particle mass median aerodynamic diameter (MMAD) varied by almost an order of magnitude (4-34 microns) while the aerosol surface charge was relatively stable (0.6-0.9 micro coulombs/m/sup 2/). The second part of this work was a series of laboratory experiments in which aerosol charge and MMAD were manipulated in a 2/sup n/ factorial design with the percentage of sampling bias for various standard methodologies as the dependent variable. The experiments used the same friable acrylic powder studied in the field work plus two size populations of ground quartz as a nonfriable control. Despite some ill conditioning of the independent variables due to experimental difficulties, statistical analysis has shown aerosol charge (at levels comparable to those measured in workroom air) is capable of having a significant biasing effect.« less
  • Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need formore » consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.« less
  • Techniques for determination of reaeration rates in natural waterbodies are reviewed. The tracer gas technique for reaeration rate determination offers many advantages over other existing methods and is widely used in rivers and streams. The tracer gas method seems to be the most promising of available techniques for estuarine reaeration rate determination. The two-dimensional late-rally averaged equations describing flow and transport in estuaries are derived and discussed. A laterally averaged numerical model of estaurine hydrodynamics and transport is modified so that tracer gas releases may be simulated. Field studies conducted as a part of the study are described. Two dyemore » releases were made in the upper Houston Ship Channel; two dye tracer gas releases were later made in the same region. The data from these studies are presented and analyzed. Mechanical mixing by shipping traffic proved to be the predominant mixing mechanism and a hindrance to further studies at that site. An intensive field study was conducted in the Colorado River estuary. Field data included velocities, salinity profiles, water surface elevations, and dye concentration data from three dye releases. The data from this study are used to calibrate and test the numerical model of estuarine tracer gas transport.« less
  • In the present work, the Schotten-Baumann reaction conditions were modified to esterify the tertiary hydroxyl group of haloperidol. The rapid synthesis (less than 20 min) makes this procedure applicable to the preparation of esters of haloperidol containing fluorine-18 (t/sup (1/2)/ 110 min), a ..gamma..-emitting radioisotope useful in external scintigraphy. In vivo distribution studies of the synthesized tritiated esters and haloperidol in the rat demonstrated that neither ester prodrug achieved overall higher brain concentration levels than haloperidol. In this study, radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to utilize insoluble particles suspended in the aerosol formulation.more » The suspended micro-aggregated bovine albumin microspheres were labelled with iodine-131 (t/sup (1/2)/ 8 days). The techniques developed illustrate the use of short-lived radionuclides for: 1) quantitation of each metered dose; 2) characterization of particle size distribution by the aerosol; and 3) determination of the extent of deposition of the particles in the aerosol and all of its components.« less
  • TERP II, the University of Maryland high ..beta.. tokamak device, produces finite ..beta.. toroidal plasmas, with elongated cross section (approx.2) and aspect ratio of 2. A partially ionized (n/sub e/ approx. 5 x 10/sup 13/cm/sup -3/, T/sub i/ approx. T/sub e/ = 3 - 6eV) plasma is heated rapidly, with the application of a fast rising toroidal magnetic field, much like the toroidal theta pinches. The ions are directly heated by the implosion to temperatures of up to 100 eV. Anomalous resistivity due to ion acoustic turbulence, two stream instabilities and turbulent heating near the magnetic field nulls, is responsiblemore » for the rapid penetration of the toroidal magnetic field (tau/sub D/ approx. 5 ..mu..s) and bulk electron heating. Ion rotation, with velocity approx. 10/sup 6/ cm/sec, is observed using the first 10 ..mu..s of the discharge. During the first 5 ..mu..s, the rotation is attributed to gradient B drifts, because of the large magnetic field gradients, associated with the diamagnetic well, and to ion polarization drifts because of the rapid decay of the poloidal electric fields present during the rise of the toroidal magnetic field. For 5 ..mu..s < t < 10 ..mu..s, the ion drift velocities are reduced, and they are presumably due to radial electric fields present in equilibrium high ..beta.. toroidal plasmas. The plasma temperature decreases to 10 eV; due to large power loss from impurity radiation and also due to plasma-wall contact from loss of toroidal force balance in the early stages of the discharge.« less