skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Projected sensitivity of the SuperCDMS SNOLAB experiment

Abstract

SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c 2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10 –43 cm 2 for a dark matter particle mass of 1 GeV/c 2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c 2. The iZIP detectors are relatively insensitive tomore » variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c 2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
Contributing Org.:
SuperCDMS Collaboration
OSTI Identifier:
1389551
Alternate Identifier(s):
OSTI ID: 1350792; OSTI ID: 1458490
Report Number(s):
arXiv:1610.00006; FERMILAB-PUB-16-467-AE; PNNL-SA-128797
Journal ID: ISSN 2470-0010; PRVDAQ
Grant/Contract Number:  
AC02-76SF00515; AC02-07CH11359; AC05-76RL01830; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 8; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; dark matter; particle astrophysics; particle dark matter; weakly interacting massive particles

Citation Formats

Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Projected sensitivity of the SuperCDMS SNOLAB experiment. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.95.082002.
Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., & Zhao, X. Projected sensitivity of the SuperCDMS SNOLAB experiment. United States. doi:10.1103/PhysRevD.95.082002.
Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Fri . "Projected sensitivity of the SuperCDMS SNOLAB experiment". United States. doi:10.1103/PhysRevD.95.082002. https://www.osti.gov/servlets/purl/1389551.
@article{osti_1389551,
title = {Projected sensitivity of the SuperCDMS SNOLAB experiment},
author = {Agnese, R. and Anderson, A. J. and Aramaki, T. and Arnquist, I. and Baker, W. and Barker, D. and Basu Thakur, R. and Bauer, D. A. and Borgland, A. and Bowles, M. A. and Brink, P. L. and Bunker, R. and Cabrera, B. and Caldwell, D. O. and Calkins, R. and Cartaro, C. and Cerdeño, D. G. and Chagani, H. and Chen, Y. and Cooley, J. and Cornell, B. and Cushman, P. and Daal, M. and Di Stefano, P. C. F. and Doughty, T. and Esteban, L. and Fallows, S. and Figueroa-Feliciano, E. and Fritts, M. and Gerbier, G. and Ghaith, M. and Godfrey, G. L. and Golwala, S. R. and Hall, J. and Harris, H. R. and Hofer, T. and Holmgren, D. and Hong, Z. and Hoppe, E. and Hsu, L. and Huber, M. E. and Iyer, V. and Jardin, D. and Jastram, A. and Kelsey, M. H. and Kennedy, A. and Kubik, A. and Kurinsky, N. A. and Leder, A. and Loer, B. and Lopez Asamar, E. and Lukens, P. and Mahapatra, R. and Mandic, V. and Mast, N. and Mirabolfathi, N. and Moffatt, R. A. and Morales Mendoza, J. D. and Orrell, J. L. and Oser, S. M. and Page, K. and Page, W. A. and Partridge, R. and Pepin, M. and Phipps, A. and Poudel, S. and Pyle, M. and Qiu, H. and Rau, W. and Redl, P. and Reisetter, A. and Roberts, A. and Robinson, A. E. and Rogers, H. E. and Saab, T. and Sadoulet, B. and Sander, J. and Schneck, K. and Schnee, R. W. and Serfass, B. and Speller, D. and Stein, M. and Street, J. and Tanaka, H. A. and Toback, D. and Underwood, R. and Villano, A. N. and von Krosigk, B. and Welliver, B. and Wilson, J. S. and Wright, D. H. and Yellin, S. and Yen, J. J. and Young, B. A. and Zhang, X. and Zhao, X.},
abstractNote = {SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10–43 cm2 for a dark matter particle mass of 1 GeV/c2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.},
doi = {10.1103/PhysRevD.95.082002},
journal = {Physical Review D},
number = 8,
volume = 95,
place = {United States},
year = {Fri Apr 07 00:00:00 EDT 2017},
month = {Fri Apr 07 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share: