skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium

Abstract

Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies is a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified andmore » preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less

Authors:
 [1];  [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE); USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1389246
Report Number(s):
BNL-114257-2017-JA
Journal ID: ISSN 0306-4549; AF5832020; NEAF322; TRN: US1601870
Grant/Contract Number:
AC05-00OR22725; SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Annals of Nuclear Energy (Oxford)
Additional Journal Information:
Journal Name: Annals of Nuclear Energy (Oxford); Journal Volume: 101; Journal Issue: C; Journal ID: ISSN 0306-4549
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; small modular reactor; fuel cycle performance; evaluation and screening; neutron leakage; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Brown, Nicholas R., Worrall, Andrew, and Todosow, Michael. Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium. United States: N. p., 2016. Web. doi:10.1016/j.anucene.2016.11.003.
Brown, Nicholas R., Worrall, Andrew, & Todosow, Michael. Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium. United States. doi:10.1016/j.anucene.2016.11.003.
Brown, Nicholas R., Worrall, Andrew, and Todosow, Michael. 2016. "Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium". United States. doi:10.1016/j.anucene.2016.11.003. https://www.osti.gov/servlets/purl/1389246.
@article{osti_1389246,
title = {Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium},
author = {Brown, Nicholas R. and Worrall, Andrew and Todosow, Michael},
abstractNote = {Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies is a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.},
doi = {10.1016/j.anucene.2016.11.003},
journal = {Annals of Nuclear Energy (Oxford)},
number = C,
volume = 101,
place = {United States},
year = 2016,
month =
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less
  • Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
  • The basic theory of once-through fuel cycling in Calder Hall type reactors is presented. Starting with a long term reactivity point curve, it is shown how in a region of constant flux an equilibrium state is reached. The properties of the curve of reactivity approach to equilibrium are then derived. After defining a mean irradiation a simple problem of optimum fuel utilization without movement within the reactor is studied. Various basic schemes of fuel cycling. some of which involve nominal movement within the reactor, are considered. from a reactivity viewpoiat. Brief comments are also made on the effect of thesemore » schemes on discharge irradiation and demands on handling facilities. It is seen that in order to achieve an equilibrium state fuel must be discharged before it has reached the equilibrium value. Thus the delay of commencement of continuous cycling may have considerable economic advantage and a study is made of this problem. Other implications of delayed onset are then reviewed. (auth)« less