skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community

Abstract

ABSTRACT The cyanobacterial culture HT-58-2 was originally described as a strain ofTolypothrix nodosawith the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align withBrasilonemastrains and not withTolypothrixisolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated byErythrobacteraceae, 97% of which arePorphyrobacterspecies. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophylla, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major genemore » cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCEA worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1389035
DOE Contract Number:
SC0001035
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied and Environmental Microbiology; Journal Volume: 83; Journal Issue: 19; Related Information: PARC partners with Washington University in St. Louis (lead); University of California, Riverside; University of Glasgow, UK; Los Alamos National Laboratory; University of New Mexico; New Mexico Corsortium; North Carolina State University; Northwestern University; Oak Ridge National Laboratory; University of Pennsylvania; Sandia National Laboratories; University of Sheffield, UK
Country of Publication:
United States
Language:
English
Subject:
solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly)

Citation Formats

Hughes, Rebecca-Ayme, Zhang, Yunlong, Zhang, Ran, Williams, Philip G., Lindsey, Jonathan S., Miller, Eric S., and Nojiri, Hideaki. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community. United States: N. p., 2017. Web. doi:10.1128/AEM.01068-17.
Hughes, Rebecca-Ayme, Zhang, Yunlong, Zhang, Ran, Williams, Philip G., Lindsey, Jonathan S., Miller, Eric S., & Nojiri, Hideaki. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community. United States. doi:10.1128/AEM.01068-17.
Hughes, Rebecca-Ayme, Zhang, Yunlong, Zhang, Ran, Williams, Philip G., Lindsey, Jonathan S., Miller, Eric S., and Nojiri, Hideaki. 2017. "Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community". United States. doi:10.1128/AEM.01068-17.
@article{osti_1389035,
title = {Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community},
author = {Hughes, Rebecca-Ayme and Zhang, Yunlong and Zhang, Ran and Williams, Philip G. and Lindsey, Jonathan S. and Miller, Eric S. and Nojiri, Hideaki},
abstractNote = {ABSTRACT The cyanobacterial culture HT-58-2 was originally described as a strain ofTolypothrix nodosawith the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align withBrasilonemastrains and not withTolypothrixisolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated byErythrobacteraceae, 97% of which arePorphyrobacterspecies. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophylla, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCEA worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.},
doi = {10.1128/AEM.01068-17},
journal = {Applied and Environmental Microbiology},
number = 19,
volume = 83,
place = {United States},
year = 2017,
month = 7
}
  • The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.
  • There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron reducing conditions and to decrease upon commencement of sulfate reducing conditions. There are many unknowns regarding the impact of iron/sulfate biogeochemistry on U(VI) reduction. This includes Fe(III) availability as well as the microbial community changes, including the activity of iron-reducers during the uranium biostimulation period even after the onset of sulfate reduction.more » Up-flow column experiments were conducted with Old Rifle site sediments containing Fe-oxides, Fe-clays, and sulfate rich groundwater. Half of the columns had sediment that was augmented with small amounts of small-particle 57Fe-goethite to track continuously minute goethite changes, and to study the effects of increased Fe(III) levels on the overall biostimulation dynamics. The addition of the 57Fe-goethite did not delay the onset of sulfate reduction, but slightly suppressed the overall rate of sulfate reduction and hence acetate utilization, it did not affect the bacterial numbers of Geobacter-like species throughout the experiment, but did lower the numbers of sulfate reducers in the sediments. 57Fe-M√∂ssbauer analyses (a 57Fe-specific technique) confirmed that there was bioavailable iron present after the onset of sulfate reduction and that iron was still being reduced during sulfate reduction. Addition of the 57Fe-goethite to the sediment had a noticeable effect on the overall composition of the microbial population. 16S rRNA analyses of biostimulated sediment using TRFLP (terminal restriction fragment length polymorphism) showed that Geobacter sp. (a known Fe-reducer) was still active and replicating during the period of significant sulfate reduction. DNA fingerprints of the sediment-attached microbial communities were dominated by 5 TRFs, that comprised 25-57% of the total profile.« less
  • Nucleic acids extracted from microbial biomass without prior culturing were hybridized with probes representing four mer operons to detect genes encoding adaptation to Hg2+ in whole-community genomes. A 29-fold enrichment in sequences similar to the mer genes of transposon Tn501 occurred during adaptation in a freshwater community. In an estuarine community, all four mer genes were only slightly enriched (by three- to fivefold), suggesting that additional, yet uncharacterized, mer genes encoded adaptation to Hg2+.
  • The application of DNA microarray technology to investigate multiple-species microbial community presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri and Methanospirillum hungatei, and their application to analyze global gene expression of this four-species microbial community in response to oxidative stress. In order to minimize the possible cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the goodmore » reproducibility of experimental measurements of multiple biological and analytical replicates. Microarray analysis showed that S. fumaroxidans and M. hungatei responded to the stress with up-regulation of several genes known to be involved in ROS detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. Consistent with previous study in pure culture, the microarray analysis showed that genes involved in methane production and energy metabolism were down-regulated by oxidative stress in M. barkeri. However, D. vulgaris seemed less sensitive to the oxidative stress when grown in a community, with almost no gene up-regulated. The study demonstrated the successful application of microarray technology to multiple-species microbial community, and our preliminary results indicated that the approach can provide novel insights on the metabolic and regulatory networks within microbial communities.« less