skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]
  1. Department of Materials Science and Engineering, University of Maryland at College Park, College Park Maryland 20742 USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1389033
DOE Contract Number:
SC0001160
Resource Type:
Journal Article
Resource Relation:
Journal Name: Advanced Materials; Journal Volume: 29; Journal Issue: 36; Related Information: NEES partners with University of Maryland (lead); University of California, Irvine; University of Florida; Los Alamos National Laboratory; Sandia National Laboratories; Yale University
Country of Publication:
United States
Language:
English
Subject:
bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)

Citation Formats

Yang, Chunpeng, Fu, Kun, Zhang, Ying, Hitz, Emily, and Hu, Liangbing. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. United States: N. p., 2017. Web. doi:10.1002/adma.201701169.
Yang, Chunpeng, Fu, Kun, Zhang, Ying, Hitz, Emily, & Hu, Liangbing. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. United States. doi:10.1002/adma.201701169.
Yang, Chunpeng, Fu, Kun, Zhang, Ying, Hitz, Emily, and Hu, Liangbing. 2017. "Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid". United States. doi:10.1002/adma.201701169.
@article{osti_1389033,
title = {Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid},
author = {Yang, Chunpeng and Fu, Kun and Zhang, Ying and Hitz, Emily and Hu, Liangbing},
abstractNote = {},
doi = {10.1002/adma.201701169},
journal = {Advanced Materials},
number = 36,
volume = 29,
place = {United States},
year = 2017,
month = 7
}
  • We present that lithium metal is a highly desirable anode material for lithium batteries due to its extremely high theoretical capacity (3860 mA h g -1), low potential (-3.04 V versus standard hydrogen electrode), and low density (0.534 g cm -3). However, dendrite growth during cycling and low coulombic efficiency, resulting in safety hazards and fast battery fading, are huge barriers to commercialization. Herein, we used atomic layer deposition (ALD) to prepare conformal, ultrathin aluminum oxide coatings on lithium. We investigated the growth mechanism during Al 2O 3 ALD on lithium by in situ quartz crystal microbalance and found largermore » growth than expected during the initial cycles. We also discovered that the ALD Al 2O 3 enhances the wettability of the Li surface towards both carbonate and ether electrolytes, leading to uniform and dense SEI formation and reduced electrolyte consumption during battery operation. Scanning electron microscopy verified that the bare Li surfaces become rough and dendritic after electrochemical cycling, whereas the ALD Al 2O 3 coated Li surfaces remain smooth and uniform. Analysis of the Li surfaces after cycling using X-ray photoelectron spectroscopy and in situ transmission electron microscopy revealed that the ALD Al 2O 3 coating remains intact during electrochemical cycling, and that Li ions diffuse through the coating and deposit on the underlying Li. Coin cell testing demonstrated more than two times longer cycling life for the ALD Al 2O 3 protected Li, and a coulombic efficiency as high as ~98% at a practical current rate of 1 mA cm -2. More significantly, when the electrolyte volume was reduced from 20 to 5 μL, the stabilizing effect of the ALD coating became even more pronounced and the cycling life was around four times longer. Finally, these results indicate that ALD Al 2O 3 coatings are a promising strategy to stabilize Li anodes for high performance energy storage devices such as Li–S batteries.« less
  • We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less
  • Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less