skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [2];  [2];  [2]; ORCiD logo [2]
  1. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia PA 19104 USA; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
  2. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia PA 19104 USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1389000
DOE Contract Number:
ERKCC61
Resource Type:
Journal Article
Resource Relation:
Journal Name: Advanced Functional Materials; Journal Volume: 27; Journal Issue: 30; Related Information: FIRST partners with Oak Ridge National Laboratory (lead); Argonne National Laboratory; Drexel University; Georgia State University; Northwestern University; Pennsylvania State University; Suffolk University; Vanderbilt University; University of Virginia
Country of Publication:
United States
Language:
English
Subject:
catalysis (heterogeneous), solar (fuels), energy storage (including batteries and capacitors), hydrogen and fuel cells, electrodes - solar, mechanical behavior, charge transport, materials and chemistry by design, synthesis (novel materials)

Citation Formats

Yan, Jun, Ren, Chang E., Maleski, Kathleen, Hatter, Christine B., Anasori, Babak, Urbankowski, Patrick, Sarycheva, Asya, and Gogotsi, Yury. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. United States: N. p., 2017. Web. doi:10.1002/adfm.201701264.
Yan, Jun, Ren, Chang E., Maleski, Kathleen, Hatter, Christine B., Anasori, Babak, Urbankowski, Patrick, Sarycheva, Asya, & Gogotsi, Yury. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. United States. doi:10.1002/adfm.201701264.
Yan, Jun, Ren, Chang E., Maleski, Kathleen, Hatter, Christine B., Anasori, Babak, Urbankowski, Patrick, Sarycheva, Asya, and Gogotsi, Yury. Fri . "Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance". United States. doi:10.1002/adfm.201701264.
@article{osti_1389000,
title = {Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance},
author = {Yan, Jun and Ren, Chang E. and Maleski, Kathleen and Hatter, Christine B. and Anasori, Babak and Urbankowski, Patrick and Sarycheva, Asya and Gogotsi, Yury},
abstractNote = {},
doi = {10.1002/adfm.201701264},
journal = {Advanced Functional Materials},
number = 30,
volume = 27,
place = {United States},
year = {Fri Jun 30 00:00:00 EDT 2017},
month = {Fri Jun 30 00:00:00 EDT 2017}
}
  • Cited by 14
  • A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less
  • Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less