skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

Authors:
; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1388993
DOE Contract Number:  
AC36-99GO10337
Resource Type:
Journal Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Related Information: CNGMD partners with National Renewable Energy Laboratory (lead); Colorado School of Mines; Harvard University; Lawrence Berkeley National Laboratory; Massachusetts Institute of Technology; Oregon State University; SLAC National Accelerator Laboratory; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
solar (photovoltaic), solar (fuels), solid state lighting, phonons, thermoelectric, hydrogen and fuel cells, defects, charge transport, optics, materials and chemistry by design, synthesis (novel materials)

Citation Formats

Kolb, Brian, Lentz, Levi C., and Kolpak, Alexie M. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods. United States: N. p., 2017. Web. doi:10.1038/s41598-017-01251-z.
Kolb, Brian, Lentz, Levi C., & Kolpak, Alexie M. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods. United States. doi:10.1038/s41598-017-01251-z.
Kolb, Brian, Lentz, Levi C., and Kolpak, Alexie M. Wed . "Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods". United States. doi:10.1038/s41598-017-01251-z.
@article{osti_1388993,
title = {Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods},
author = {Kolb, Brian and Lentz, Levi C. and Kolpak, Alexie M.},
abstractNote = {},
doi = {10.1038/s41598-017-01251-z},
journal = {Scientific Reports},
issn = {2045-2322},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {4}
}

Works referenced in this record:

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Finding Density Functionals with Machine Learning
journal, June 2012


Permutation invariant polynomial neural network approach to fitting potential energy surfaces
journal, August 2013

  • Jiang, Bin; Guo, Hua
  • The Journal of Chemical Physics, Vol. 139, Issue 5
  • DOI: 10.1063/1.4817187

A meeting with Enrico Fermi
journal, January 2004


Kinetic-energy functional of the electron density
journal, June 1992


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Representing potential energy surfaces by high-dimensional neural network potentials
journal, April 2014


Time-dependent density functional theory: Past, present, and future
journal, August 2005

  • Burke, Kieron; Werschnik, Jan; Gross, E. K. U.
  • The Journal of Chemical Physics, Vol. 123, Issue 6
  • DOI: 10.1063/1.1904586

Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory
journal, October 2010

  • Rocca, Dario; Lu, Deyu; Galli, Giulia
  • The Journal of Chemical Physics, Vol. 133, Issue 16
  • DOI: 10.1063/1.3494540

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Lattice Dynamics of Diamond
journal, June 1967


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Potential Energy Surfaces Fitted by Artificial Neural Networks
journal, March 2010

  • Handley, Chris M.; Popelier, Paul L. A.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 10
  • DOI: 10.1021/jp9105585

The GW method
journal, March 1998


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Inhomogeneous Electron Gas
journal, November 1964


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Orbital-free bond breaking via machine learning
journal, December 2013

  • Snyder, John C.; Rupp, Matthias; Hansen, Katja
  • The Journal of Chemical Physics, Vol. 139, Issue 22
  • DOI: 10.1063/1.4834075

Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Thermal conductivity of group-IV semiconductors from a kinetic-collective model
journal, September 2014

  • de Tomas, C.; Cantarero, A.; Lopeandia, A. F.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue 2169
  • DOI: 10.1098/rspa.2014.0371

Ab initio molecular simulations with numeric atom-centered orbitals
journal, November 2009

  • Blum, Volker; Gehrke, Ralf; Hanke, Felix
  • Computer Physics Communications, Vol. 180, Issue 11
  • DOI: 10.1016/j.cpc.2009.06.022

Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
journal, September 2004


Modified Statistical Treatment of Kinetic Energy in the Thomas−Fermi Model
journal, May 2004

  • Chai, Jeng-Da; Weeks, John D.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 21
  • DOI: 10.1021/jp037716b

Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
journal, January 2011

  • Behler, Jörg
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 40
  • DOI: 10.1039/c1cp21668f

Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies
journal, August 2009

  • Balabin, Roman M.; Lomakina, Ekaterina I.
  • The Journal of Chemical Physics, Vol. 131, Issue 7
  • DOI: 10.1063/1.3206326

Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials
journal, December 2015


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces
journal, January 2016

  • Natarajan, Suresh Kondati; Behler, Jörg
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 41
  • DOI: 10.1039/C6CP05711J

Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks
journal, February 2016


Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocity
journal, September 1994

  • Morath, Christopher J.; Maris, Humphrey J.; Cuomo, Jerome J.
  • Journal of Applied Physics, Vol. 76, Issue 5
  • DOI: 10.1063/1.357560

Pure density functional for strong correlation and the thermodynamic limit from machine learning
journal, December 2016


NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Coupled-cluster theory in quantum chemistry
journal, February 2007


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965