skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomistic material behavior at extreme pressures

; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: npj Computational Materials; Journal Volume: 2; Journal Issue: 1; Related Information: EDDE partners with Oak Ridge National Laboratory (lead); Lawrence Livermore National Laboratory; University of Michigan; University of Tennessee; University of Wisconsin; University of Wyoming; Virginia Tech
Country of Publication:
United States
phonons, thermal conductivity, nuclear (including radiation effects), defects, spin dynamics, materials and chemistry by design, synthesis (novel materials)

Citation Formats

Béland, Laurent Karim, Osetsky, Yuri N., and Stoller, Roger E. Atomistic material behavior at extreme pressures. United States: N. p., 2016. Web. doi:10.1038/npjcompumats.2016.7.
Béland, Laurent Karim, Osetsky, Yuri N., & Stoller, Roger E. Atomistic material behavior at extreme pressures. United States. doi:10.1038/npjcompumats.2016.7.
Béland, Laurent Karim, Osetsky, Yuri N., and Stoller, Roger E. Fri . "Atomistic material behavior at extreme pressures". United States. doi:10.1038/npjcompumats.2016.7.
title = {Atomistic material behavior at extreme pressures},
author = {Béland, Laurent Karim and Osetsky, Yuri N. and Stoller, Roger E.},
abstractNote = {},
doi = {10.1038/npjcompumats.2016.7},
journal = {npj Computational Materials},
number = 1,
volume = 2,
place = {United States},
year = {Fri Aug 05 00:00:00 EDT 2016},
month = {Fri Aug 05 00:00:00 EDT 2016}
  • Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
  • During the week of September 10-17, 2013, close to 20 inches of rain fell across Boulder County, Colorado, USA. This rainfall represented a 1000-year event that caused massive hillslope erosion, landslides, and mobilization of sediments. The resultant stream flows corresponded to a 100-year flood. For the Boulder Creek Critical Zone Observatory (BC-CZO), this event provided an opportunity to study the effect of extreme rainfall on solute concentration-discharge relationships and biogeochemical catchment processes. We observed base cation and dissolved organic carbon (DOC) concentrations at two sites on Boulder Creek following the recession of peak flow. We also isolated three distinct fractionsmore » of dissolved organic matter (DOM) for chemical characterization. At the upper site, which represented the forested mountain catchment, the concentrations of the base cations Ca, Mg and Na were greatest at the peak flood and decreased only slightly, in contrast with DOC and K concentrations, which decreased substantially. At the lower site within urban corridor, all solutes decreased abruptly after the first week of flow recession, with base cation concentrations stabilizing while DOC and K continued to decrease. Additionally, we found significant spatiotemporal trends in the chemical quality of organic matter exported during the flood recession, as measured by fluorescence, 13C-NMR spectroscopy, and FTICR-MS. Similar to the effect of extreme rainfall events in driving landslides and mobilizing sediments, our findings suggest that such events mobilize solutes by the flushing of the deeper layers of the critical zone, and that this flushing regulates terrestrial-aquatic biogeochemical linkages during the flow recession.« less
  • In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less
  • Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
  • A new form of equation of state is proposed for use over extremely wide ranges of pressure where conventional equations fail. In particular, fluids, including H{sub 2}O and CO{sub 2} as well as argon, etc., remain more compressible at very high densities than can be represented by typical equations with van der Waals or Carnahan and Starling repulsive terms. The new equation is fitted to the data for H{sub 2}O and CO{sub 2} over the entire range from the vapor and liquid below the critical temperature to at least 2000 K and from zero pressure to more than 10{sup 5}more » bar (10 GPa) with good agreement. The extension of the equation for mixed fluids is discussed.« less