skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials

Authors:
;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1388401
DOE Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Journal Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)

Citation Formats

Romano, Giuseppe, and Kolpak, Alexie M. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials. United States: N. p., 2017. Web. doi:10.1038/srep44379.
Romano, Giuseppe, & Kolpak, Alexie M. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials. United States. doi:10.1038/srep44379.
Romano, Giuseppe, and Kolpak, Alexie M. Fri . "Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials". United States. doi:10.1038/srep44379.
@article{osti_1388401,
title = {Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials},
author = {Romano, Giuseppe and Kolpak, Alexie M.},
abstractNote = {},
doi = {10.1038/srep44379},
journal = {Scientific Reports},
issn = {2045-2322},
number = ,
volume = 7,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

Thermal conductivity of composites of aligned nanoscale and microscale wires and pores
journal, August 2006


Thermal Diode: Rectification of Heat Flux
journal, October 2004


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Thermal Conductivity of Amorphous Silicon
journal, May 1996

  • Wada, Hiroshi; Kamijoh, Takeshi
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 5B
  • DOI: 10.1143/JJAP.35.L648

ShengBTE: A solver of the Boltzmann transport equation for phonons
journal, June 2014

  • Li, Wu; Carrete, Jesús; A. Katcho, Nebil
  • Computer Physics Communications, Vol. 185, Issue 6
  • DOI: 10.1016/j.cpc.2014.02.015

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
journal, August 2011


Thermal phonon boundary scattering in anisotropic thin films
journal, November 2015


Projector augmented-wave method
journal, December 1994


Heat transport in silicon from first-principles calculations
journal, August 2011


Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
journal, January 2011

  • Hopkins, Patrick E.; Reinke, Charles M.; Su, Mehmet F.
  • Nano Letters, Vol. 11, Issue 1
  • DOI: 10.1021/nl102918q

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Thermal conductivity of periodic microporous silicon films
journal, February 2004

  • Song, David; Chen, Gang
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1642753

Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation
journal, January 2016


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Concurrent thermal and electrical modeling of sub‐micrometer silicon devices
journal, May 1996

  • Lai, Jie; Majumdar, Arun
  • Journal of Applied Physics, Vol. 79, Issue 9
  • DOI: 10.1063/1.361424

Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Effective thermal conductivity of particulate composites with interfacial thermal resistance
journal, May 1997

  • Nan, Ce-Wen; Birringer, R.; Clarke, David R.
  • Journal of Applied Physics, Vol. 81, Issue 10
  • DOI: 10.1063/1.365209

Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
journal, December 2016

  • Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.
  • AIP Advances, Vol. 6, Issue 12
  • DOI: 10.1063/1.4968610

Toward phonon-boundary engineering in nanoporous materials
journal, July 2014

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Applied Physics Letters, Vol. 105, Issue 3
  • DOI: 10.1063/1.4891362

Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
journal, October 2015

  • Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit
  • Applied Physics Letters, Vol. 107, Issue 17
  • DOI: 10.1063/1.4934883

Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
journal, July 2015

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Journal of Heat Transfer, Vol. 137, Issue 7
  • DOI: 10.1115/1.4029775

Ballistic Phonon Transport in Holey Silicon
journal, April 2015


Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Temperature and structure size dependence of the thermal conductivity of porous silicon
journal, September 2011