skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

Authors:
 [1];  [2];  [3];  [3];  [4];  [4];  [1]
  1. Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Argonne-Northwestern Solar Energy Research (ANSER) Center, 2145 Sheridan Road, Evanston, Illinois 60208, United States
  2. Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
  3. Argonne-Northwestern Solar Energy Research (ANSER) Center, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
  4. Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Argonne-Northwestern Solar Energy Research (ANSER) Center, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1388171
DOE Contract Number:
SC0001059
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Applied Materials and Interfaces; Journal Volume: 8; Journal Issue: 37; Related Information: ANSER partners with Northwestern University (lead); Argonne National Laboratory; University of Chicago; University of Illinois, Urbana-Champaign; Yale University
Country of Publication:
United States
Language:
English
Subject:
catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)

Citation Formats

Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., and Martinson, Alex B. F. Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. United States: N. p., 2016. Web. doi:10.1021/acsami.6b07658.
Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., & Martinson, Alex B. F. Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. United States. doi:10.1021/acsami.6b07658.
Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., and Martinson, Alex B. F. 2016. "Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics". United States. doi:10.1021/acsami.6b07658.
@article{osti_1388171,
title = {Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics},
author = {Kim, In Soo and Haasch, Richard T. and Cao, Duyen H. and Farha, Omar K. and Hupp, Joseph T. and Kanatzidis, Mercouri G. and Martinson, Alex B. F.},
abstractNote = {},
doi = {10.1021/acsami.6b07658},
journal = {ACS Applied Materials and Interfaces},
number = 37,
volume = 8,
place = {United States},
year = 2016,
month = 9
}
  • A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2more » that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.« less
  • In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
  • In this paper, the influence of PbCl{sub 2} content in PbI{sub 2} solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl{sub 2} powder into PbI{sub 2} solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH{sub 3}NH{sub 3}PbI{sub 3−x}Cl{sub x} thin film by the precursormore » solution with the mixture of 0.80 M PbI{sub 2} and 0.20 M PbCl{sub 2} exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm{sup −2} and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI{sub 2}, (b) 0.80 M PbI{sub 2}+0.20 M PbCl{sub 2}, (c) 0.80 M PbI{sub 2}+0.40 M PbCl{sub 2}, and (d) 0.80 M PbI{sub 2}+0.60 M PbCl{sub 2}. With the increase of the PbCl{sub 2} content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl{sub 2} content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.« less
  • Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr 3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputteredmore » zinc oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr 3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less