skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning exciton dynamics

Abstract

Machine learning ground state QM/MM for accelerated computation of exciton dynamics.

Authors:
 [1]; ORCiD logo [2];  [2]; ORCiD logo [2]
  1. Harvard Univ., Cambridge, MA (United States); Technische Univ. Munchen, Garching (Germany)
  2. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1387693
Grant/Contract Number:  
SC0001088
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 7; Journal Issue: 8; Related Information: CE partners with Massachusetts Institute of Technology (lead); Brookhaven National Laboratory; Harvard University; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; solar (photovoltaic); solid state lighting; photosynthesis (natural and artificial); charge transport; optics; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Hase, Florian, Valleau, Stephanie, Pyzer-Knapp, Edward, and Aspuru-Guzik, Alan. Machine learning exciton dynamics. United States: N. p., 2016. Web. doi:10.1039/c5sc04786b.
Hase, Florian, Valleau, Stephanie, Pyzer-Knapp, Edward, & Aspuru-Guzik, Alan. Machine learning exciton dynamics. United States. doi:10.1039/c5sc04786b.
Hase, Florian, Valleau, Stephanie, Pyzer-Knapp, Edward, and Aspuru-Guzik, Alan. Fri . "Machine learning exciton dynamics". United States. doi:10.1039/c5sc04786b. https://www.osti.gov/servlets/purl/1387693.
@article{osti_1387693,
title = {Machine learning exciton dynamics},
author = {Hase, Florian and Valleau, Stephanie and Pyzer-Knapp, Edward and Aspuru-Guzik, Alan},
abstractNote = {Machine learning ground state QM/MM for accelerated computation of exciton dynamics.},
doi = {10.1039/c5sc04786b},
journal = {Chemical Science},
number = 8,
volume = 7,
place = {United States},
year = {Fri Apr 01 00:00:00 EDT 2016},
month = {Fri Apr 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933