skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid

Abstract

The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1386264
DOE Contract Number:  
SC0001035
Resource Type:
Journal Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Volume: 54; Journal Issue: 46; Related Information: PARC partners with Washington University in St. Louis (lead); University of California, Riverside; University of Glasgow, UK; Los Alamos National Laboratory; University of New Mexico; New Mexico Corsortium; North Carolina State University; Northwestern University; Oak Ridge National Laboratory; University of Pennsylvania; Sandia National Laboratories; University of Sheffield, UK; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly)

Citation Formats

Lichtenstein, Bruce R., Bialas, Chris, Cerda, José F., Fry, Bryan A., Dutton, P. Leslie, and Moser, Christopher C. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. United States: N. p., 2015. Web. doi:10.1002/anie.201507094.
Lichtenstein, Bruce R., Bialas, Chris, Cerda, José F., Fry, Bryan A., Dutton, P. Leslie, & Moser, Christopher C. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. United States. doi:10.1002/anie.201507094.
Lichtenstein, Bruce R., Bialas, Chris, Cerda, José F., Fry, Bryan A., Dutton, P. Leslie, and Moser, Christopher C. Mon . "Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid". United States. doi:10.1002/anie.201507094.
@article{osti_1386264,
title = {Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid},
author = {Lichtenstein, Bruce R. and Bialas, Chris and Cerda, José F. and Fry, Bryan A. and Dutton, P. Leslie and Moser, Christopher C.},
abstractNote = {The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.},
doi = {10.1002/anie.201507094},
journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 46,
volume = 54,
place = {United States},
year = {2015},
month = {9}
}

Works referenced in this record:

Reversible proton coupled electron transfer in a peptide-incorporated naphthoquinoneamino acid
journal, January 2009

  • Lichtenstein, Bruce R.; Cerda, José F.; Koder, Ronald L.
  • Chem. Commun., Issue 2
  • DOI: 10.1039/B815915G

Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers
journal, October 2008

  • Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu
  • Journal of Bioenergetics and Biomembranes, Vol. 40, Issue 5
  • DOI: 10.1007/s10863-008-9179-1

Site-Specific Binding of Quinones to Proteins through Thiol Addition and Addition−Elimination Reactions
journal, May 2005

  • Li, Wen-Wu; Heinze, Jürgen; Haehnel, Wolfgang
  • Journal of the American Chemical Society, Vol. 127, Issue 17
  • DOI: 10.1021/ja050974x

De Novo Design, Synthesis, and Characterization of Quinoproteins
journal, September 2006

  • Li, Wen-Wu; Hellwig, Petra; Ritter, Michaela
  • Chemistry - A European Journal, Vol. 12, Issue 27
  • DOI: 10.1002/chem.200501212

Characterization of a helical protein designed from first principles
journal, August 1988


Design and synthesis of multi-haem proteins
journal, March 1994

  • Robertson, Dan E.; Farid, Ramy S.; Moser, Christopher C.
  • Nature, Vol. 368, Issue 6470, p. 425-432
  • DOI: 10.1038/368425a0

Nature of biological electron transfer
journal, February 1992

  • Moser, Christopher C.; Keske, Jonathan M.; Warncke, Kurt
  • Nature, Vol. 355, Issue 6363
  • DOI: 10.1038/355796a0

Semisynthesis of Peptoid–Protein Hybrids by Chemical Ligation at Serine
journal, December 2013

  • Levine, Paul M.; Craven, Timothy W.; Bonneau, Richard
  • Organic Letters, Vol. 16, Issue 2
  • DOI: 10.1021/ol4033978

Natural engineering principles of electron tunnelling in biological oxidation–reduction
journal, November 1999

  • Page, Christopher C.; Moser, Christopher C.; Chen, Xiaoxi
  • Nature, Vol. 402, Issue 6757
  • DOI: 10.1038/46972

Site-Specific Replacement of a Conserved Tyrosine in Ribonucleotide Reductase with an Aniline Amino Acid:  A Mechanistic Probe for a Redox-Active Tyrosine
journal, December 2004

  • Chang, Michelle C. Y.; Yee, Cyril S.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 126, Issue 51
  • DOI: 10.1021/ja044124d

Palladium-Catalyzed Cleavage of O/N-Propargyl Protecting Groups in Aqueous Media under a Copper-Free Condition 1
journal, February 2003

  • Pal, Manojit; Parasuraman, Karuppasamy; Yeleswarapu, Koteswar Rao
  • Organic Letters, Vol. 5, Issue 3
  • DOI: 10.1021/ol027382t

Role of the PEWY Glutamate in Hydroquinone−Quinone Oxidation−Reduction Catalysis in the Q o Site of Cytochrome bc 1
journal, September 2006

  • Osyczka, Artur; Zhang, Haibo; Mathé, Christelle
  • Biochemistry, Vol. 45, Issue 35
  • DOI: 10.1021/bi060013a

Ferredoxin and ferredoxin-heme maquettes
journal, December 1996

  • Gibney, B. R.; Mulholland, S. E.; Rabanal, F.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 26
  • DOI: 10.1073/pnas.93.26.15041

Redox Characteristics of a de Novo Quinone Protein
journal, April 2007

  • Hay, Sam; Westerlund, Kristina; Tommos, Cecilia
  • The Journal of Physical Chemistry B, Vol. 111, Issue 13
  • DOI: 10.1021/jp066654x

Protein chemical synthesis by serine and threonine ligation
journal, April 2013

  • Zhang, Y.; Xu, C.; Lam, H. Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 17
  • DOI: 10.1073/pnas.1221012110

A Hierarchy of Aryloxide Deprotection by Boron Tribromide
journal, August 2004

  • Punna, Sreenivas; Meunier, Stéphane; Finn, M. G.
  • Organic Letters, Vol. 6, Issue 16
  • DOI: 10.1021/ol0489898

Influence of protein interactions on oxidation/reduction midpoint potentials of cofactors in natural and de novo metalloproteins
journal, August 2013

  • Olson, T. L.; Williams, J. C.; Allen, J. P.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.02.014

Protein Dielectric Environment Modulates the Electron-Transfer Pathway in Photosynthetic Reaction Centers
journal, November 2012


Electrochemical and structural coupling of the naphthoquinone amino acid
journal, January 2012

  • Lichtenstein, Bruce R.; Moorman, Veronica R.; Cerda, José F.
  • Chemical Communications, Vol. 48, Issue 14
  • DOI: 10.1039/c2cc16968a

Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer
journal, December 2004

  • Hay, S.; Wallace, B. B.; Smith, T. A.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 51, p. 17675-17680
  • DOI: 10.1073/pnas.0406192101

Chemical and semisynthesis of posttranslationally modified proteins
journal, January 2012

  • Siman, Peter; Brik, Ashraf
  • Organic & Biomolecular Chemistry, Vol. 10, Issue 30
  • DOI: 10.1039/c2ob25149c

New flavins for old: artificial flavins as active site probes of flavoproteins
journal, October 1986

  • Ghisla, S.; Massey, V.
  • Biochemical Journal, Vol. 239, Issue 1
  • DOI: 10.1042/bj2390001

Insights into the Mechanism and Catalysis of the Native Chemical Ligation Reaction
journal, May 2006

  • Johnson, Erik C. B.; Kent, Stephen B. H.
  • Journal of the American Chemical Society, Vol. 128, Issue 20
  • DOI: 10.1021/ja058344i

Thioester Enolate Stabilization in the Acyl-CoA Dehydrogenases: The Effect of 5-Deaza-flavin Substitution
journal, August 2001

  • Rudik, Irina; Thorpe, Colin
  • Archives of Biochemistry and Biophysics, Vol. 392, Issue 2
  • DOI: 10.1006/abbi.2001.2467

Protein semisynthesis and expressed protein ligation: chasing a protein's tail
journal, December 2005


Electrostatic Environment of Hemes in Proteins:  p K a s of Hydroxyl Ligands
journal, July 2006

  • Song, Yifan; Mao, Junjun; Gunner, M. R.
  • Biochemistry, Vol. 45, Issue 26
  • DOI: 10.1021/bi052182l

2- O -Propargyl Ethers:  Readily Cleavable, Minimally Intrusive Protecting Groups for β-Mannosyl Donors
journal, May 2005

  • Crich, David; Jayalath, Prasanna
  • Organic Letters, Vol. 7, Issue 11
  • DOI: 10.1021/ol050680g