skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High thermal conductivity in amorphous polymer blends by engineered interchain interactions

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Solar and Thermal Energy Conversion (CSTEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1385075
DOE Contract Number:  
SC0000957
Resource Type:
Journal Article
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 14; Journal Issue: 3; Related Information: CSTEC partners with University of Michigan (lead); Kent State University; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
solar (photovoltaic), solar (thermal), phonons, thermal conductivity, thermoelectric, electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)

Citation Formats

Kim, Gun-Ho, Lee, Dongwook, Shanker, Apoorv, Shao, Lei, Kwon, Min Sang, Gidley, David, Kim, Jinsang, and Pipe, Kevin P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. United States: N. p., 2014. Web. doi:10.1038/nmat4141.
Kim, Gun-Ho, Lee, Dongwook, Shanker, Apoorv, Shao, Lei, Kwon, Min Sang, Gidley, David, Kim, Jinsang, & Pipe, Kevin P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. United States. doi:10.1038/nmat4141.
Kim, Gun-Ho, Lee, Dongwook, Shanker, Apoorv, Shao, Lei, Kwon, Min Sang, Gidley, David, Kim, Jinsang, and Pipe, Kevin P. Mon . "High thermal conductivity in amorphous polymer blends by engineered interchain interactions". United States. doi:10.1038/nmat4141.
@article{osti_1385075,
title = {High thermal conductivity in amorphous polymer blends by engineered interchain interactions},
author = {Kim, Gun-Ho and Lee, Dongwook and Shanker, Apoorv and Shao, Lei and Kwon, Min Sang and Gidley, David and Kim, Jinsang and Pipe, Kevin P.},
abstractNote = {},
doi = {10.1038/nmat4141},
journal = {Nature Materials},
issn = {1476-1122},
number = 3,
volume = 14,
place = {United States},
year = {2014},
month = {11}
}

Works referenced in this record:

The Hydrogen Bond in the Solid State
journal, January 2002


Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si
journal, November 1999

  • Allen, Philip B.; Feldman, Joseph L.; Fabian, Jaroslav
  • Philosophical Magazine B, Vol. 79, Issue 11-12
  • DOI: 10.1080/13642819908223054

Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture
journal, October 2008

  • Kunal, Kumar; Robertson, Christopher G.; Pawlus, Sebastian
  • Macromolecules, Vol. 41, Issue 19, p. 7232-7238
  • DOI: 10.1021/ma801155c

High thermal conductivity of chain-oriented amorphous polythiophene
journal, March 2014

  • Singh, Virendra; Bougher, Thomas L.; Weathers, Annie
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.44

Heat transport in thin dielectric films
journal, March 1997

  • Lee, S. -M.; Cahill, David G.
  • Journal of Applied Physics, Vol. 81, Issue 6
  • DOI: 10.1063/1.363923

Ultrastrong and Stiff Layered Polymer Nanocomposites
journal, October 2007


Interfacial thermal conductance in spun-cast polymer films and polymer brushes
journal, July 2010

  • Losego, Mark D.; Moh, Lionel; Arpin, Kevin A.
  • Applied Physics Letters, Vol. 97, Issue 1
  • DOI: 10.1063/1.3458802

Electrical and thermal conductivity of polymers filled with metal powders
journal, September 2002


Data reduction in 3ω method for thin-film thermal conductivity determination
journal, April 2001

  • Borca-Tasciuc, T.; Kumar, A. R.; Chen, G.
  • Review of Scientific Instruments, Vol. 72, Issue 4
  • DOI: 10.1063/1.1353189

Origins of thermal boundary conductance of interfaces involving organic semiconductors
journal, November 2012

  • Jin, Yansha; Shao, Chen; Kieffer, John
  • Journal of Applied Physics, Vol. 112, Issue 9
  • DOI: 10.1063/1.4759286

Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers
journal, November 2012

  • O’Brien, Peter J.; Shenogin, Sergei; Liu, Jianxiun
  • Nature Materials, Vol. 12, Issue 2
  • DOI: 10.1038/nmat3465

Testing the minimum thermal conductivity model for amorphous polymers using high pressure
journal, May 2011


Polyethylene nanofibres with very high thermal conductivities
journal, March 2010

  • Shen, Sheng; Henry, Asegun; Tong, Jonathan
  • Nature Nanotechnology, Vol. 5, Issue 4
  • DOI: 10.1038/nnano.2010.27

Thermal conductivity of polymers
journal, October 1977


Thermal Conductivity of High-Modulus Polymer Fibers
journal, June 2013

  • Wang, Xiaojia; Ho, Victor; Segalman, Rachel A.
  • Macromolecules, Vol. 46, Issue 12, p. 4937-4943
  • DOI: 10.1021/ma400612y

Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity
journal, February 2009

  • Shenogin, Sergei; Bodapati, Arun; Keblinski, Pawel
  • Journal of Applied Physics, Vol. 105, Issue 3
  • DOI: 10.1063/1.3073954

Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Phase imaging and stiffness in tapping-mode atomic force microscopy
journal, April 1997


Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors
journal, March 2009

  • Koh, Yee Kan; Singer, Suzanne L.; Kim, Woochul
  • Journal of Applied Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.3078808

Size effect on the thermal conductivity of ultrathin polystyrene films
journal, April 2014

  • Liu, Jun; Ju, Shenghong; Ding, Yifu
  • Applied Physics Letters, Vol. 104, Issue 15
  • DOI: 10.1063/1.4871737