skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2- as a Proton Acceptor at pH 8

Abstract

The complex CuII(Py3P) (1) is an electrocatalyst for water oxidation to dioxygen in H2PO4-/HPO42- buffered aqueous solutions. Controlled potential electrolysis experiments with 1 at pH 8.0 at an applied potential of 1.40 V versus the normal hydrogen electrode resulted in the formation of dioxygen (84 % Faradaic yield) through multiple catalyst turnovers with minimal catalyst deactivation. The results of an electrochemical kinetics study point to a single-site mechanism for water oxidation catalysis with involvement of phosphate buffer anions either through atom–proton transfer in a rate-limiting O[BOND]O bond-forming step with HPO42- as the acceptor base or by concerted electron–proton transfer with electron transfer to the electrode and proton transfer to the HPO42- base.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Catalytic Hydrocarbon Functionalization (CCHF)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1384737
DOE Contract Number:  
SC0001298
Resource Type:
Journal Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Volume: 53; Journal Issue: 45; Related Information: CCHF partners with University of Virginia (lead); Brigham Young University; California Institute of Technology; Colorado School of Mines; University of Maryland; University of North Carolina, Chapel Hill; University of North Texas; Princeton University; The Scripps Research Institute; Yale University; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous), catalysis (heterogeneous), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials)

Citation Formats

Coggins, Michael K., Zhang, Ming-Tian, Chen, Zuofeng, Song, Na, and Meyer, Thomas J. Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2- as a Proton Acceptor at pH 8. United States: N. p., 2014. Web. doi:10.1002/anie.201407131.
Coggins, Michael K., Zhang, Ming-Tian, Chen, Zuofeng, Song, Na, & Meyer, Thomas J. Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2- as a Proton Acceptor at pH 8. United States. doi:10.1002/anie.201407131.
Coggins, Michael K., Zhang, Ming-Tian, Chen, Zuofeng, Song, Na, and Meyer, Thomas J. Mon . "Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2- as a Proton Acceptor at pH 8". United States. doi:10.1002/anie.201407131.
@article{osti_1384737,
title = {Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2- as a Proton Acceptor at pH 8},
author = {Coggins, Michael K. and Zhang, Ming-Tian and Chen, Zuofeng and Song, Na and Meyer, Thomas J.},
abstractNote = {The complex CuII(Py3P) (1) is an electrocatalyst for water oxidation to dioxygen in H2PO4-/HPO42- buffered aqueous solutions. Controlled potential electrolysis experiments with 1 at pH 8.0 at an applied potential of 1.40 V versus the normal hydrogen electrode resulted in the formation of dioxygen (84 % Faradaic yield) through multiple catalyst turnovers with minimal catalyst deactivation. The results of an electrochemical kinetics study point to a single-site mechanism for water oxidation catalysis with involvement of phosphate buffer anions either through atom–proton transfer in a rate-limiting O[BOND]O bond-forming step with HPO42- as the acceptor base or by concerted electron–proton transfer with electron transfer to the electrode and proton transfer to the HPO42- base.},
doi = {10.1002/anie.201407131},
journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 45,
volume = 53,
place = {United States},
year = {2014},
month = {9}
}

Works referenced in this record:

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes
journal, July 2013

  • Hintermair, Ulrich; Sheehan, Stafford W.; Parent, Alexander R.
  • Journal of the American Chemical Society, Vol. 135, Issue 29
  • DOI: 10.1021/ja4048762

Low-Overpotential Water Oxidation by a Surface-Bound Ruthenium-Chromophore-Ruthenium-Catalyst Assembly
journal, November 2013

  • Norris, Michael R.; Concepcion, Javier J.; Fang, Zhen
  • Angewandte Chemie International Edition, Vol. 52, Issue 51
  • DOI: 10.1002/anie.201305951

Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes
journal, July 2011

  • Schley, Nathan D.; Blakemore, James D.; Subbaiyan, Navaneetha K.
  • Journal of the American Chemical Society, Vol. 133, Issue 27
  • DOI: 10.1021/ja2004522

Efficient water oxidation catalysts based on readily available iron coordination complexes
journal, September 2011

  • Fillol, Julio Lloret; Codolà, Zoel; Garcia-Bosch, Isaac
  • Nature Chemistry, Vol. 3, Issue 10
  • DOI: 10.1038/nchem.1140

Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex
journal, April 2014

  • Coggins, Michael K.; Zhang, Ming-Tian; Vannucci, Aaron K.
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja412822u

Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water
journal, September 2012

  • Sarma, Rupam; Angeles-Boza, Alfredo M.; Brinkley, David W.
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja304786s

O 2 Evolution from the Manganese−Oxo Cubane Core Mn 4 O 4 6+ :  A Molecular Mimic of the Photosynthetic Water Oxidation Enzyme?
journal, October 2000

  • Ruettinger, W.; Yagi, M.; Wolf, K.
  • Journal of the American Chemical Society, Vol. 122, Issue 42
  • DOI: 10.1021/ja0005587

Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation
journal, July 2009

  • Hull, Jonathan F.; Balcells, David; Blakemore, James D.
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja901270f

Nucleophilic Attack of Hydroxide on a Mn V Oxo Complex: A Model of the O−O Bond Formation in the Oxygen Evolving Complex of Photosystem II
journal, July 2009

  • Gao, Yan; Åkermark, Torbjörn; Liu, Jianhui
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja901139r

Proton-Coupled Electron Transfer
journal, April 2012

  • Weinberg, David R.; Gagliardi, Christopher J.; Hull, Jonathan F.
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200177j

Reactivity of Dioxygen−Copper Systems
journal, February 2004

  • Lewis, Elizabeth A.; Tolman, William B.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020633r

Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base
journal, September 2013

  • Wang, D.; Groves, J. T.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 39
  • DOI: 10.1073/pnas.1315383110

Copper(II) Catalysis of Water Oxidation
journal, November 2012

  • Chen, Zuofeng; Meyer, Thomas J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 2
  • DOI: 10.1002/anie.201207215

Making Oxygen with Ruthenium Complexes
journal, December 2009

  • Concepcion, Javier J.; Jurss, Jonah W.; Brennaman, M. Kyle
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001526

Proton-Coupled Electron Transfer
journal, November 2007

  • Huynh, My Hang V.; Meyer, Thomas J.
  • Chemical Reviews, Vol. 107, Issue 11
  • DOI: 10.1021/cr0500030

Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting
journal, January 2013

  • Chen, Zuofeng; Kang, Peng; Zhang, Ming-Tian
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24487c

Concerted O atom-proton transfer in the O--O bond forming step in water oxidation
journal, April 2010

  • Chen, Z.; Concepcion, J. J.; Hu, X.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 16, p. 7225-7229
  • DOI: 10.1073/pnas.1001132107

A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential
journal, December 2013

  • Zhang, Teng; Wang, Cheng; Liu, Shubin
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja409267p

Development of Bioinspired Mn 4 O 4 −Cubane Water Oxidation Catalysts: Lessons from Photosynthesis
journal, December 2009

  • Dismukes, G. Charles; Brimblecombe, Robin; Felton, Greg A. N.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900249x

Low-Overpotential Water Oxidation by a Surface-Bound Ruthenium-Chromophore-Ruthenium-Catalyst Assembly
journal, November 2013

  • Norris, Michael R.; Concepcion, Javier J.; Fang, Zhen
  • Angewandte Chemie, Vol. 125, Issue 51
  • DOI: 10.1002/ange.201305951

Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation
journal, November 2013

  • Vannucci, A. K.; Alibabaei, L.; Losego, M. D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 52
  • DOI: 10.1073/pnas.1319832110

Iron-Catalyzed CH Hydroxylation and Olefin cis -Dihydroxylation Using a Single-Electron Oxidant and Water as the Oxygen-Atom Source
journal, September 2012

  • Garcia-Bosch, Isaac; Codolà, Zoel; Prat, Irene
  • Chemistry - A European Journal, Vol. 18, Issue 42
  • DOI: 10.1002/chem.201202147

A soluble copper–bipyridine water-oxidation electrocatalyst
journal, May 2012

  • Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.
  • Nature Chemistry, Vol. 4, Issue 6
  • DOI: 10.1038/nchem.1350

Fast Water Oxidation Using Iron
journal, August 2010

  • Ellis, W. Chadwick; McDaniel, Neal D.; Bernhard, Stefan
  • Journal of the American Chemical Society, Vol. 132, Issue 32
  • DOI: 10.1021/ja104766z

Structure and Spectroscopy of Copper−Dioxygen Complexes
journal, February 2004

  • Mirica, Liviu M.; Ottenwaelder, Xavier; Stack, T. Daniel P.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020632z

Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex
journal, January 2011

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Borau-Garcia, Javier
  • Chemical Communications, Vol. 47, Issue 14
  • DOI: 10.1039/c0cc05522k

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex
journal, January 2013

  • Zhang, Ming-Tian; Chen, Zuofeng; Kang, Peng
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja3097515

One-Electron Activation of Water Oxidation Catalysis
journal, May 2014

  • Tamaki, Yusuke; Vannucci, Aaron K.; Dares, Christopher J.
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja502637s