skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A displacement-based finite element formulation for general polyhedra using harmonic shape functions: FINITE ELEMENT FORMULATION FOR GENERAL POLYHEDRA

Authors:
 [1]
  1. Computational Structural Mechanics Department, Engineering Sciences Center, Sandia National Laboratories, Albuquerque NM 87185-0372 USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Frontiers of Subsurface Energy Security (CFSES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1384406
DOE Contract Number:  
SC0001114
Resource Type:
Journal Article
Journal Name:
International Journal for Numerical Methods in Engineering
Additional Journal Information:
Journal Volume: 97; Journal Issue: 1; Related Information: CFSES partners with University of Texas at Austin (lead); Sandia National Laboratory; Journal ID: ISSN 0029-5981
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
nuclear (including radiation effects), carbon sequestration

Citation Formats

Bishop, J. E. A displacement-based finite element formulation for general polyhedra using harmonic shape functions: FINITE ELEMENT FORMULATION FOR GENERAL POLYHEDRA. United States: N. p., 2014. Web. doi:10.1002/nme.4562.
Bishop, J. E. A displacement-based finite element formulation for general polyhedra using harmonic shape functions: FINITE ELEMENT FORMULATION FOR GENERAL POLYHEDRA. United States. doi:10.1002/nme.4562.
Bishop, J. E. Mon . "A displacement-based finite element formulation for general polyhedra using harmonic shape functions: FINITE ELEMENT FORMULATION FOR GENERAL POLYHEDRA". United States. doi:10.1002/nme.4562.
@article{osti_1384406,
title = {A displacement-based finite element formulation for general polyhedra using harmonic shape functions: FINITE ELEMENT FORMULATION FOR GENERAL POLYHEDRA},
author = {Bishop, J. E.},
abstractNote = {},
doi = {10.1002/nme.4562},
journal = {International Journal for Numerical Methods in Engineering},
issn = {0029-5981},
number = 1,
volume = 97,
place = {United States},
year = {2014},
month = {1}
}

Works referenced in this record:

A stabilized conforming nodal integration for Galerkin mesh-free methods
journal, January 2000


Consistent pseudo-derivatives in meshless methods
journal, July 1997


Basic Principles of Virtual Element Methods
journal, November 2012

  • BeirÃO Da Veiga, L.; Brezzi, F.; Cangiani, A.
  • Mathematical Models and Methods in Applied Sciences, Vol. 23, Issue 01
  • DOI: 10.1142/S0218202512500492

Virtual Elements for Linear Elasticity Problems
journal, January 2013

  • da Veiga, L. Beira͂o; Brezzi, F.; Marini, L. D.
  • SIAM Journal on Numerical Analysis, Vol. 51, Issue 2
  • DOI: 10.1137/120874746

Maximum Entropy Coordinates for Arbitrary Polytopes
journal, July 2008