skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River

Abstract

In 1997, the National Marine Fisheries Service (NMFS) listed upper Columbia River steelhead trout (Oncorhynchus znykiss) as endangered. This action affected management of land-use activities along and within the Hanford Reach of the Columbia River, which flows through the U.S. Department of Energy (DOE) Hanford Site. Steelhead covered in this listing include all naturally spawned populations of steel-head and their progeny in streams in the Columbia River Basin upstream from the Yakima River to the United States/Canada border. The NMFS has identified a general listing of activities that could potentially result in harm to steelhead (62 FR 43937, August 18, 1997). One of these concerns includes land-use changes resulting in mass wasting or surface erosion. Landslide activity along the White Bluffs on the east ,side of Locke Island has redirected river flow into the island where substantial erosion has occurred. This erosion has exposed important anthropological and archaeological resources that were previously buried on the island. The DOE is working with affected tribes and other agencies to develop a plan for addressing the erosion of Locke Island. As part of this effort, the U.S. Army Corps of Engineers has prepared an assessment of potential alternatives to stabilize the erosion, includingmore » a no-action alternative. Steelhead historically spawned in the vicinity of Locke Island, but recent information on the occurrence of steelhead spawning or availability of spawning habitat was lacking. Therefore, the purpose of this study was to determine if steelhead spawned in the vicinity of Locke Island erosion and to evaluate the composition of substrate in the affected area. Surveys to document the occurrence of steelheads redds were conducted in Spring 1999. The surveys were conducted from the air as well as with the use of an underwater video camera. Neither aerial nor underwater surveys documented steelhead spawning within the survey area. Habitat surveys were conducted in July 1999. The survey area was divided into an area adjacent to the erosion zone and an area immediately upstream of this zone. The majority of the survey area was composed of gravel and medium cobble (particle sizes 0.6 to 15.2 cm). Aquatic vegetation (milfoil) was found in the upstream section, indicating lower water velocities not conducive to steelhead spawning. Based on the available substrate within the entire survey area, we estimate 81% of survey site could be used by adult steelhead for spawning.« less

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Lab., Richland, WA (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
13843
Report Number(s):
PNNL-13055
R&D Project: 12674; TRN: AH200135%%548
DOE Contract Number:
AC06-76RL01830
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 19 Oct 1999
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; COLUMBIA RIVER; COLUMBIA RIVER BASIN; FISHERIES; HABITAT; ISLANDS; LAND USE; PLANTS; RIVERS; TROUT; US CORPS OF ENGINEERS

Citation Formats

Geist,, and Mueller, RP. Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River. United States: N. p., 1999. Web. doi:10.2172/13843.
Geist,, & Mueller, RP. Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River. United States. doi:10.2172/13843.
Geist,, and Mueller, RP. 1999. "Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River". United States. doi:10.2172/13843. https://www.osti.gov/servlets/purl/13843.
@article{osti_13843,
title = {Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River},
author = {Geist, and Mueller, RP},
abstractNote = {In 1997, the National Marine Fisheries Service (NMFS) listed upper Columbia River steelhead trout (Oncorhynchus znykiss) as endangered. This action affected management of land-use activities along and within the Hanford Reach of the Columbia River, which flows through the U.S. Department of Energy (DOE) Hanford Site. Steelhead covered in this listing include all naturally spawned populations of steel-head and their progeny in streams in the Columbia River Basin upstream from the Yakima River to the United States/Canada border. The NMFS has identified a general listing of activities that could potentially result in harm to steelhead (62 FR 43937, August 18, 1997). One of these concerns includes land-use changes resulting in mass wasting or surface erosion. Landslide activity along the White Bluffs on the east ,side of Locke Island has redirected river flow into the island where substantial erosion has occurred. This erosion has exposed important anthropological and archaeological resources that were previously buried on the island. The DOE is working with affected tribes and other agencies to develop a plan for addressing the erosion of Locke Island. As part of this effort, the U.S. Army Corps of Engineers has prepared an assessment of potential alternatives to stabilize the erosion, including a no-action alternative. Steelhead historically spawned in the vicinity of Locke Island, but recent information on the occurrence of steelhead spawning or availability of spawning habitat was lacking. Therefore, the purpose of this study was to determine if steelhead spawned in the vicinity of Locke Island erosion and to evaluate the composition of substrate in the affected area. Surveys to document the occurrence of steelheads redds were conducted in Spring 1999. The surveys were conducted from the air as well as with the use of an underwater video camera. Neither aerial nor underwater surveys documented steelhead spawning within the survey area. Habitat surveys were conducted in July 1999. The survey area was divided into an area adjacent to the erosion zone and an area immediately upstream of this zone. The majority of the survey area was composed of gravel and medium cobble (particle sizes 0.6 to 15.2 cm). Aquatic vegetation (milfoil) was found in the upstream section, indicating lower water velocities not conducive to steelhead spawning. Based on the available substrate within the entire survey area, we estimate 81% of survey site could be used by adult steelhead for spawning.},
doi = {10.2172/13843},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1999,
month =
}

Technical Report:

Save / Share:
  • Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River
  • This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimatelymore » the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.« less
  • The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of themore » Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.« less
  • Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 tomore » 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin.« less