skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase Imaging: A Compressive Sensing Approach

Abstract

Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEMmore » aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn = |F[HnΨ(r)]|2, where the matrices Hn encode the mask structure of the aperture. This is a nonlinear inverse problem, but has been shown to be solvable even in the underdetermined case [6]. Since each diffraction pattern yn contains diffraction information from selected regions of the same sample, the differences in each pattern contain local phase information, which can be combined to form a full estimate of the real-space wave-function[7]. References: [1] W. Pauli in “Die allgemeinen Prinzipien der Wellenmechanik“, ed. H Geiger and W Scheel, (Julius Springer, Berlin). [2] A. Tonomura, Rev. Mod. Phys. 59 (1987), p. 639. [3] J. Miao et al, Nature 400 (1999), p. 342. [4] H. Lichte et al, Annu. Rev. Mater. Res. 37 (2007), p. 539. [5] J. Yamasaki et al, Appl. Phys. Lett. 101 (2012), 234105. [6] P Schniter and S Rangan. Signal Proc., IEEE Trans. on. 64(4), (2015), pp. 1043. [7] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1379440
Report Number(s):
PNNL-SA-124072
Journal ID: ISSN 1431-9276; applab
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Microscopy and Microanalysis; Journal Volume: 23; Journal Issue: S1
Country of Publication:
United States
Language:
English

Citation Formats

Schneider, Sebastian, Stevens, Andrew, Browning, Nigel D., Pohl, Darius, Nielsch, Kornelius, and Rellinghaus, Bernd. Phase Imaging: A Compressive Sensing Approach. United States: N. p., 2017. Web. doi:10.1017/S1431927617001155.
Schneider, Sebastian, Stevens, Andrew, Browning, Nigel D., Pohl, Darius, Nielsch, Kornelius, & Rellinghaus, Bernd. Phase Imaging: A Compressive Sensing Approach. United States. doi:10.1017/S1431927617001155.
Schneider, Sebastian, Stevens, Andrew, Browning, Nigel D., Pohl, Darius, Nielsch, Kornelius, and Rellinghaus, Bernd. 2017. "Phase Imaging: A Compressive Sensing Approach". United States. doi:10.1017/S1431927617001155.
@article{osti_1379440,
title = {Phase Imaging: A Compressive Sensing Approach},
author = {Schneider, Sebastian and Stevens, Andrew and Browning, Nigel D. and Pohl, Darius and Nielsch, Kornelius and Rellinghaus, Bernd},
abstractNote = {Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn = |F[HnΨ(r)]|2, where the matrices Hn encode the mask structure of the aperture. This is a nonlinear inverse problem, but has been shown to be solvable even in the underdetermined case [6]. Since each diffraction pattern yn contains diffraction information from selected regions of the same sample, the differences in each pattern contain local phase information, which can be combined to form a full estimate of the real-space wave-function[7]. References: [1] W. Pauli in “Die allgemeinen Prinzipien der Wellenmechanik“, ed. H Geiger and W Scheel, (Julius Springer, Berlin). [2] A. Tonomura, Rev. Mod. Phys. 59 (1987), p. 639. [3] J. Miao et al, Nature 400 (1999), p. 342. [4] H. Lichte et al, Annu. Rev. Mater. Res. 37 (2007), p. 539. [5] J. Yamasaki et al, Appl. Phys. Lett. 101 (2012), 234105. [6] P Schniter and S Rangan. Signal Proc., IEEE Trans. on. 64(4), (2015), pp. 1043. [7] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.},
doi = {10.1017/S1431927617001155},
journal = {Microscopy and Microanalysis},
number = S1,
volume = 23,
place = {United States},
year = 2017,
month = 7
}
  • Tomographic imaging modalities sample subjects with a discrete, finite set of measurements, while the underlying object function is continuous. Because of this, inversion of the imaging model, even under ideal conditions, necessarily entails approximation. The error incurred by this approximation can be important when there is rapid variation in the object function or when the objects of interest are small. In this work, we investigate this issue with the Fourier transform (FT), which can be taken as the imaging model for magnetic resonance imaging (MRl) or some forms of wave imaging. Compressive sensing has been successful for inverting this datamore » model when only a sparse set of samples are available. We apply the compressive sensing principle to a somewhat related problem of frequency extrapolation, where the object function is represented by a super-resolution grid with many more pixels than FT measurements. The image on the super-resolution grid is obtained through nonconvex minimization. The method fully utilizes the available FT samples, while controlling aliasing and ringing. The algorithm is demonstrated with continuous FT samples of the Shepp-Logan phantom with additional small, high-contrast objects.« less
  • Cited by 50
  • The use of high resolution imaging methods in the scanning transmission electron microscope (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example in the study of organic systems, in tomography and during in-situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high resolution STEM images. These experiments successively reduce the number of pixels in the image (thereby reducing the overall dose while maintaining the high resolution information)more » and show promising results for reconstructing images from this reduced set of randomly collected measurements. We show that this approach is valid for both atomic resolution images and nanometer resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these post acquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or alignment of the microscope itself.« less
  • Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressuremore » field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.« less