skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Value of CCS under Current Policy Scenarios: NDCs and Beyond

Abstract

This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that, as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost ofmore » climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1379436
Report Number(s):
PNNL-SA-121411
Journal ID: ISSN 1876-6102; AA9020100
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Energy Procedia; Journal Volume: 114; Journal Issue: C
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY, AND ECONOMY

Citation Formats

Davidson, Casie L., Dahowski, Robert T., McJeon, Haewon C., Clarke, Leon E., Iyer, Gokul C., and Muratori, Matteo. The Value of CCS under Current Policy Scenarios: NDCs and Beyond. United States: N. p., 2017. Web. doi:10.1016/j.egypro.2017.03.1885.
Davidson, Casie L., Dahowski, Robert T., McJeon, Haewon C., Clarke, Leon E., Iyer, Gokul C., & Muratori, Matteo. The Value of CCS under Current Policy Scenarios: NDCs and Beyond. United States. doi:10.1016/j.egypro.2017.03.1885.
Davidson, Casie L., Dahowski, Robert T., McJeon, Haewon C., Clarke, Leon E., Iyer, Gokul C., and Muratori, Matteo. Sat . "The Value of CCS under Current Policy Scenarios: NDCs and Beyond". United States. doi:10.1016/j.egypro.2017.03.1885.
@article{osti_1379436,
title = {The Value of CCS under Current Policy Scenarios: NDCs and Beyond},
author = {Davidson, Casie L. and Dahowski, Robert T. and McJeon, Haewon C. and Clarke, Leon E. and Iyer, Gokul C. and Muratori, Matteo},
abstractNote = {This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that, as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.},
doi = {10.1016/j.egypro.2017.03.1885},
journal = {Energy Procedia},
number = C,
volume = 114,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}
  • This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less
  • Fleishman et al have submitted a critique of a paper previously published in this same journal by Malone, Dooley and Bradbury. This submission represents our response to the critique by Fleishman et al. This submission reiterates our position that polling the public writ large as to the value of CCS research is not a technically sound way of understanding how CCS technologies might deploy in the future.
  • When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)
  • This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less
  • Because of the significantly higher efficiencies of plug-in hybrid electric vehicles (PHEVs) compared to the internal combustion engines they are replacing, PHEVs may be an economic means of reducing direct CO2 emissions from the transportation sector. However, without a climate policy in place that limits CO2 emissions on the electric generation sector, the impact of widespread deployment of PHEVs on overall US CO2 emissions is not as clear. Depending on the fuel mix for expanded electric generation, there may be just a slight reduction in total emissions, or conceivably even an overall increase. A comprehensive analysis must consider jointly themore » transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the PNNL MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total US CO2 emissions. Under the assumptions used in this analysis where PHEVs obtain 50-60% of the market for passenger and light duty trucks, the ability to deploy PHEVs under the two climate policies modeled here results in 6,200-7,400 MtCO2 of additional cost effective emissions reductions from the U.S. economy over the period 2005-2050. The introduction of PHEVs into the U.S. transportation sector coupled with climate policies such as those examined here can also reduce U.S. demand for oil by 20-30% by 2050 compared to today’s levels.« less