skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

Abstract

An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

Inventors:
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1379209
Patent Number(s):
9,752,468
Application Number:
14/497,550
Assignee:
UT-Battelle, LLC ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Sep 26
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Muralidharan, Govindarajan. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application. United States: N. p., 2017. Web.
Muralidharan, Govindarajan. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application. United States.
Muralidharan, Govindarajan. 2017. "Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application". United States. doi:. https://www.osti.gov/servlets/purl/1379209.
@article{osti_1379209,
title = {Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application},
author = {Muralidharan, Govindarajan},
abstractNote = {An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 9
}

Patent:

Save / Share:
  • An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.
  • An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60more » Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.« less
  • This patent describes as a composition of matter, an alloy. It consists essentially of niobium, titanium and aluminum. The approximate concentration in atom percent is: titanium 31 to 48, aluminum 8 to 21, the balance being essentially niobium.
  • An alloy consists essentially of, in terms of weight percent: 6 to 8.5 Cr, 5.5 to 13.5 Mo, 0.4 to 7.5 W, 1 to 2 Ti, 0.7 to 0.85 Mn, 0.05 to 0.3 Al, up to to 0.1 Co, 0.08 to 0.5 C, 1 to 5 Ta, 1 to 4 Nab, 1 to 3 Hf, balance Ni. The alloy is characterized by, at 850.degree. C., a yield strength of at least 36 Ksi, a tensile strength of at least 40 Ksi, a creep rupture life at 12 Ksi of at least 72.1 hours, and a corrosion rate, expressed in weightmore » loss [g/(cm2sec)].times.10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 8 to 25.« less
  • An alloy is composed essentially of, in terms of weight percent: 6 to 8.5 Cr, 5.5 to 13.5 Mo, 0.4 to 7.5 W, 1 to 2 Ti, 0.7 to 0.85 Mn, 0.05 to 0.3 Al, 0.08 to 0.5 C, 0 to 1 Nb, with the balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 30 Ksi, a creep rupture life at 12 Ksi of at least 45 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquidmore » FLiNaK at 850.degree. C., in the range of 6 to 39.« less