skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Manipulating multiple order parameters via oxygen vacancies: The case of E u 0.5 B a 0.5 Ti O 3 - δ

Abstract

Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies ($${V}_{\mathrm{O}}$$) is a key issue for the future development of transition-metal oxides. Progress in this field is currently addressed through $${V}_{\mathrm{O}}$$ variations and their impact on mainly one order parameter. In this paper, we reveal a mechanism for tuning both magnetism and ferroelectricity simultaneously by using $${V}_{\mathrm{O}}$$. Combining experimental and density-functional theory studies of $$\mathrm{E}{\mathrm{u}}_{0.5}\mathrm{B}{\mathrm{a}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3{-}{\delta}}$$, we demonstrate that oxygen vacancies create $$\mathrm{T}{\mathrm{i}}^{3+}3{d}^{1}$$ defect states, mediating the ferromagnetic coupling between the localized Eu $$4{f}^{7}$$ spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. Finally, the dual function of Ti sites also promises a magnetoelectric coupling in the $$\mathrm{E}{\mathrm{u}}_{0.5}\mathrm{B}{\mathrm{a}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3{-}{\delta}}$$.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [5];  [7];  [8];  [9];  [3];  [3];  [3];  [6];  [7];  [5];  [10];  [11];  [11];  [12] more »;  [12];  [3];  [3];  [6];  [5];  [9];  [10];  [8];  [2];  [8] « less
  1. Nanjing Univ. of Aeronautics and Astronautics (China). College of Science; Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  3. Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics. Inst. of Physics
  4. Univ. of Electronic Science and Technology of China, Chengdu (China). State Key Lab. of Electronic Thin Films and Integrated Devices
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Chinese Academy of Sciences (CAS), Hefei (China). High Magnetic Field Lab.
  7. Texas A & M Univ., College Station, TX (United States). Materials Science and Engineering Program. Dept. of Electrical and Computer Engineering
  8. Nanjing Univ. of Aeronautics and Astronautics (China). College of Science
  9. Soochow Univ., Suzhou (China). College of Physics, Optoelectronics and Energy
  10. National Inst. of Scientific Research-Energy, Materials and Telecommunications (INRS-EMT), Varennes, QC (Canada)
  11. Soochow Univ., Suzhou (China). Center for Soft Condensed Matter Physics and Interdisciplinary Research
  12. Chinese Academy of Sciences (CAS), Ningbo (China). Key Lab. of Magnetic Materials and Devices. Ningbo Inst. of Materials Technology and Engineering
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Texas A & M Univ., College Station, TX (United States); Nanjing Univ. of Aeronautics and Astronautics (China); Soochow University, Suzhou (China); Chinese Academy of Sciences (CAS), Beijing (China); National Inst. of Scientific Research-Energy, Materials and Telecommunications (INRS-EMT), Varennes, QC (Canada)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Basic Research Program of China; National Natural Science Foundation of China (NSFC); Program for Postgraduates Research Innovation in University of Jiangsu Province (China); Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de recherche du Québec - Nature et technologies (FRQNT) (Canada)
OSTI Identifier:
1457304
Alternate Identifier(s):
OSTI ID: 1378818
Report Number(s):
LA-UR-15-29487
Journal ID: ISSN 2469-9950; TRN: US1901351
Grant/Contract Number:  
AC52-06NA25396; DMR-1643911; DMR-1565822; 2014CB921001; 11274237; U1632122; 11004145; 51202153; U1332209; U1435208; 11134012; 11174355; 11474349; 11227405; CXZZ13_0798
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 11; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ferroelectricity; magnetoelectric effect; vacancies; multiferroics; oxides; thin films; transition metals; magnetization measurements; optical second-harmonic generation

Citation Formats

Li, Weiwei, He, Qian, Wang, Le, Zeng, Huizhong, Bowlan, John, Ling, Langsheng, Yarotski, Dmitry A., Zhang, Wenrui, Zhao, Run, Dai, Jiahong, Gu, Junxing, Shen, Shipeng, Guo, Haizhong, Pi, Li, Wang, Haiyan, Wang, Yongqiang, Velasco-Davalos, Ivan A., Wu, Yangjiang, Hu, Zhijun, Chen, Bin, Li, Run-Wei, Sun, Young, Jin, Kuijuan, Zhang, Yuheng, Chen, Hou-Tong, Ju, Sheng, Ruediger, Andreas, Shi, Daning, Borisevich, Albina Y., and Yang, Hao. Manipulating multiple order parameters via oxygen vacancies: The case of Eu0.5Ba0.5TiO3-δ. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.115105.
Li, Weiwei, He, Qian, Wang, Le, Zeng, Huizhong, Bowlan, John, Ling, Langsheng, Yarotski, Dmitry A., Zhang, Wenrui, Zhao, Run, Dai, Jiahong, Gu, Junxing, Shen, Shipeng, Guo, Haizhong, Pi, Li, Wang, Haiyan, Wang, Yongqiang, Velasco-Davalos, Ivan A., Wu, Yangjiang, Hu, Zhijun, Chen, Bin, Li, Run-Wei, Sun, Young, Jin, Kuijuan, Zhang, Yuheng, Chen, Hou-Tong, Ju, Sheng, Ruediger, Andreas, Shi, Daning, Borisevich, Albina Y., & Yang, Hao. Manipulating multiple order parameters via oxygen vacancies: The case of Eu0.5Ba0.5TiO3-δ. United States. https://doi.org/10.1103/PhysRevB.96.115105
Li, Weiwei, He, Qian, Wang, Le, Zeng, Huizhong, Bowlan, John, Ling, Langsheng, Yarotski, Dmitry A., Zhang, Wenrui, Zhao, Run, Dai, Jiahong, Gu, Junxing, Shen, Shipeng, Guo, Haizhong, Pi, Li, Wang, Haiyan, Wang, Yongqiang, Velasco-Davalos, Ivan A., Wu, Yangjiang, Hu, Zhijun, Chen, Bin, Li, Run-Wei, Sun, Young, Jin, Kuijuan, Zhang, Yuheng, Chen, Hou-Tong, Ju, Sheng, Ruediger, Andreas, Shi, Daning, Borisevich, Albina Y., and Yang, Hao. 2017. "Manipulating multiple order parameters via oxygen vacancies: The case of Eu0.5Ba0.5TiO3-δ". United States. https://doi.org/10.1103/PhysRevB.96.115105. https://www.osti.gov/servlets/purl/1457304.
@article{osti_1457304,
title = {Manipulating multiple order parameters via oxygen vacancies: The case of Eu0.5Ba0.5TiO3-δ},
author = {Li, Weiwei and He, Qian and Wang, Le and Zeng, Huizhong and Bowlan, John and Ling, Langsheng and Yarotski, Dmitry A. and Zhang, Wenrui and Zhao, Run and Dai, Jiahong and Gu, Junxing and Shen, Shipeng and Guo, Haizhong and Pi, Li and Wang, Haiyan and Wang, Yongqiang and Velasco-Davalos, Ivan A. and Wu, Yangjiang and Hu, Zhijun and Chen, Bin and Li, Run-Wei and Sun, Young and Jin, Kuijuan and Zhang, Yuheng and Chen, Hou-Tong and Ju, Sheng and Ruediger, Andreas and Shi, Daning and Borisevich, Albina Y. and Yang, Hao},
abstractNote = {Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (${V}_{\mathrm{O}}$) is a key issue for the future development of transition-metal oxides. Progress in this field is currently addressed through ${V}_{\mathrm{O}}$ variations and their impact on mainly one order parameter. In this paper, we reveal a mechanism for tuning both magnetism and ferroelectricity simultaneously by using ${V}_{\mathrm{O}}$. Combining experimental and density-functional theory studies of $\mathrm{E}{\mathrm{u}}_{0.5}\mathrm{B}{\mathrm{a}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3{-}{\delta}}$, we demonstrate that oxygen vacancies create $\mathrm{T}{\mathrm{i}}^{3+}3{d}^{1}$ defect states, mediating the ferromagnetic coupling between the localized Eu $4{f}^{7}$ spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. Finally, the dual function of Ti sites also promises a magnetoelectric coupling in the $\mathrm{E}{\mathrm{u}}_{0.5}\mathrm{B}{\mathrm{a}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3{-}{\delta}}$.},
doi = {10.1103/PhysRevB.96.115105},
url = {https://www.osti.gov/biblio/1457304}, journal = {Physical Review B},
issn = {2469-9950},
number = 11,
volume = 96,
place = {United States},
year = {Wed Sep 06 00:00:00 EDT 2017},
month = {Wed Sep 06 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dielectric, magnetic and structural properties of novel multiferroic Eu 0.5 Ba 0.5 TiO 3 ceramics
journal, December 2010


Functional Ion Defects in Transition Metal Oxides
journal, August 2013


Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure
journal, October 1998


Oxygen-Vacancy-Induced Polar Behavior in (LaFeO 3 ) 2 /(SrFeO 3 ) Superlattices
journal, April 2014


Persistent optically induced magnetism in oxygen-deficient strontium titanate
journal, March 2014


Simple ways of determining perovskite structures
journal, November 1975


Why Are There so Few Magnetic Ferroelectrics?
journal, July 2000


Room-temperature ferroelectricity in SrTiO 3 nanodots array formed by an ac -bias field
journal, September 2013


A multiferroic material to search for the permanent electric dipole moment of the electron
journal, July 2010


The classification of tilted octahedra in perovskites
journal, November 1972


Origin of ferroelectricity in perovskite oxides
journal, July 1992


A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
journal, January 2004


Multiferroic memories
journal, March 2007


Multiferroics: Past, present, and future
journal, October 2010


Multiferroics progress and prospects in thin films
journal, January 2007


Ferroelectromagnets
journal, July 1982


Electronic structure of the spin- 1 2 quantum magnet TiOCl
journal, September 2005


Role of Ti Antisitelike Defects in SrTiO 3
journal, October 2009


Study of strain fields at a-Si/c-Si interface
journal, April 2004


Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface
journal, September 2011


Atomically Resolved Mapping of Polarization and Electric Fields Across Ferroelectric/Oxide Interfaces by Z-contrast Imaging
journal, April 2011


Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures
journal, March 2003


Multiferroic and magnetoelectric materials
journal, August 2006


Anti-ferrodistortive-Like Oxygen-Octahedron Rotation Induced by the Oxygen Vacancy in Cubic SrTiO 3
journal, October 2012


Multiferroic Vacancies at Ferroelectric PbTiO 3 Surfaces
journal, September 2015


Coupling between the magnetism and dielectric properties in Eu 1 x Ba x TiO 3
journal, January 2004


Works referencing / citing this record:

Interface Engineered Room‐Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films
journal, November 2019


Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides
journal, September 2018


Oxygen-vacancy-mediated dielectric property in perovskite Eu 0.5 Ba 0.5 TiO 3-δ epitaxial thin films
journal, April 2018


Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films
text, January 2018


Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides
text, January 2018


Interface Engineered Room-Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films.
text, January 2020


Interface Engineered Room-Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films.
text, January 2019