skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual Microwave Radiometer Experiment Field Campaign Report

Abstract

Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left tomore » users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky. The idea is that (1) the covered radiometer data can provide LWP (and water vapor) along the off-zenith slant path and (2) the two sets of measurements can be compared to identify when wet-radome contamination is occurring.« less

Authors:
 [1]
  1. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1378333
Report Number(s):
DOE/SC-ARM-17-027
DOE Contract Number:
AC05-7601830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 47 OTHER INSTRUMENTATION; microwave radiometer; liquid water path; preciptable water vapor; wet-radome contamination

Citation Formats

Marchand, Roger. Dual Microwave Radiometer Experiment Field Campaign Report. United States: N. p., 2017. Web. doi:10.2172/1378333.
Marchand, Roger. Dual Microwave Radiometer Experiment Field Campaign Report. United States. doi:10.2172/1378333.
Marchand, Roger. 2017. "Dual Microwave Radiometer Experiment Field Campaign Report". United States. doi:10.2172/1378333. https://www.osti.gov/servlets/purl/1378333.
@article{osti_1378333,
title = {Dual Microwave Radiometer Experiment Field Campaign Report},
author = {Marchand, Roger},
abstractNote = {Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky. The idea is that (1) the covered radiometer data can provide LWP (and water vapor) along the off-zenith slant path and (2) the two sets of measurements can be compared to identify when wet-radome contamination is occurring.},
doi = {10.2172/1378333},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 9
}

Technical Report:

Save / Share:
  • Measurements of solar and infrared irradiance by instruments rigidly mounted to an aircraft have historically been plagued by the introduction of offsets and fluctuations into the data that are solely due to the pitch and roll movements of the aircraft. Two STabilized RAdiometer Platforms (STRAPs) were developed for the U.S. Navy in the early to mid-2000s to address this problem. The development was a collaborative effort between the Naval Research Laboratory (NRL), the Naval Postgraduate School Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), and the U.S. Department of Energy (DOE) Sandia National Laboratories. The STRAPs were designed and builtmore » by L-3 Communications Sonoma EO (formerly the small business Sonoma Design Group).« less
  • Sea surface temperature (SST) is one of the most appropriate and important climate parameters: a widespread increase is an indicator of global warming and modifications of the geographical distribution of SST are an extremely sensitive indicator of climate change. There is high demand for accurate, reliable, high-spatial-and-temporal-resolution SST measurements for the parameterization of ocean-atmosphere heat, momentum, and gas (SST is therefore critical to understanding the processes controlling the global carbon dioxide budget) fluxes, for detailed diagnostic and process-orientated studies to better understand the behavior of the climate system, as model boundary conditions, for assimilation into climate models, and for themore » rigorous validation of climate model output. In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the sea surface (skin) temperature (SSST) must be measured to an error < 0.1 C and a precision of 0.05 C. Anyone experienced in shipboard meteorological measurements will recognize this is a tough specification. These demands require complete confidence in the content, interpretation, accuracy, reliability, and continuity of observational SST data—criteria that can only be fulfilled by the successful implementation of an ongoing data product validation strategy.« less
  • A new dual-channel microwave radiometer has been built by the Atmospheric Sciences Center of the DRI. This instrument measures water vapor and liquid water in the atmosphere at frequencies of 20.6 GHz and 31.65 GHz. It is mounted in a mobile air conditioned van for use in both moving and stationary modes. The design includes a remote control capability and a spinning disk reflector as part of the antenna mirror system. The latter feature enables productive use of the instrument in both rainfall and snowing conditions.
  • This paper discusses the two-channel microprocessor controlled microwave radiometer system developed at the Radio Laboratory of the Helsinki University of Technology for oil thickness measurements. The thickness estimations are based on the actual antenna brightness temperatures in real time seen by the two radiometers. For this reason great care has been taken to achieve stable radiometer system. The effects of weather conditions are eliminated by storing the brightness temperature values from a clean water surface into the memory to be used as reference values for thickness measurements. However, the weather and the sea state have great influence on the behaviourmore » of the oil slick and for this reason quite low references, 5 GHz and 16.5 GHz, are selected for the radiometers. This means that the thickness estimations are possible up to 10 mm with an accuracy of 1 mm using the 5 GHz radiometer and up to 3 mm with an accuracy of 0.2 mm using the 16.5 GHz radiometer. Finally, some experimental results from field tests are explained.« less
  • Three Microwave Radiometers (two 3-channel and one 2-channel) were deployed in the Southern Appalachian Mountains in western North Carolina as part of the Integrated Precipitation and Hydrology Experiment (IPHEx), which was the first National Aeronautics and Space Administration (NASA) Global Precipitation Mission (GPM) Ground Validation (GV) field campaign after the launch of the GPM Core Satellite (Barros et al. 2014). The radiometers were used along with other instrumentation to estimate the liquid water content of low-level clouds and fog. Specifically, data from the radiometers were collected to help, with other instrumentation, to characterize fog formation, evolution, and dissipation in themore » region (by monitoring the liquid water path in the column) and observe the effect of that fog on the precipitation regime. Data were collected at three locations in the Southern Appalachians, specifically western North Carolina: a valley in the inner mountain region, a valley in the open mountain pass region, and a ridge in the inner region. This project contributes to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility mission by providing in situ observations designed to improve the understanding of clouds and precipitation processes in complex terrain. The end goal is to use this improved understanding of physical processes to improve remote-sensing algorithms and representations of orographic precipitation microphysics in climate and earth system models.« less