skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global Chemists Code of Ethics.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the American Chemical Society National Meeting held August 20-17, 2016 in Philadelphia, PA.
Country of Publication:
United States

Citation Formats

Jackson, Nancy B. Global Chemists Code of Ethics.. United States: N. p., 2016. Web.
Jackson, Nancy B. Global Chemists Code of Ethics.. United States.
Jackson, Nancy B. 2016. "Global Chemists Code of Ethics.". United States. doi:.
title = {Global Chemists Code of Ethics.},
author = {Jackson, Nancy B.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less
  • The present work consists of two main parts: the first part deals with the simulation, with the aid of a modified version of the KIVA-II code, of the global combustion process in a compression ignition engine with direct injection; the second part describes the sensitivity of the code to spatial discretization. The results obtained from the simulations of the entire analysis are discussed in relation to the experimental data relevant to a DI unit of medium displacement Ruggerini RP 170. The first part of this work describes some of the considerable changes made to the combustion model of the originalmore » KIVA-II code. These changes have remarkably improved the code`s ability in simulating the overall combustion process. In particular, models were implemented to take into account the auto-ignition process delay, the diffusively controlled combustion and a transition criterion--based on a dynamic calculation of the delayed time--between the first phase of combustion, (kinetic control) and the diffusive control phase. The second part of this work analyzes the sensitivity of the modified code to the variations of the refinement degree in the azimuthal direction of the mesh. This analysis is carried out by keeping tall the parameters of the global combustion model--described in the first part of this work--constant. Both the fuel spray dynamics and the combustion phase are analyzed in detail. A significant dependence upon the mesh is noticed, in relation both to the spray evolution and to the combustion process. In particular, by thickening the mesh, an increasing displacement of the simulated pressure profile by the experimental one has been noticed, while the trend of the pressure profile is still quite correct.« less
  • The objectives of this research are (1) to parallelize a suite of multiregion groundwater flow and solute transport codes that use Galerkin and Lagrangian- Eulerian finite element methods, (2) to test the compatibility of a global shared memory emulation software with a High Performance FORTRAN (HPF) compiler, and (3) to obtain performance characteristics and scalability of the parallel codes. The suite of multiregion flow and transport codes, 3DMURF and 3DMURT, were parallelized using the DOLIB shared memory emulation, in conjunction with the PGI HPF compiler, to run on the Intel Paragons at the Oak Ridge National Laboratory (ORNL) and amore » network of workstations. The novelty of this effort is first in the use of HPF and global shared memory emulation concurrently to facilitate the conversion of a serial code to a parallel code, and secondly the shared memory library enables efficient implementation of Lagrangian particle tracking along flow characteristics. The latter allows long-time-step-size simulation with particle tracking and dynamic particle redistribution for load balancing, thereby reducing the number of time steps needed for most transient problems. The parallel codes were applied to a pumping well problem to test the efficiency of the domain decomposition and particle tracking algorithms. The full problem domain consists of over 200,000 degrees of freedom with highly nonlinear soil property functions. Relatively good scalability was obtained for a preliminary test run on the Intel Paragons at the Center for Computational Sciences (CCS), ORNL. However, due to the difficulties we encountered in the PGI HPF compiler, as of the writing of this manuscript we are able to report results from 3DMURF only.« less
  • Knowledge of the heat deposition profile is crucial to all transport analysis of beam heated discharges. The heat deposition profile can be inferred from the fast ion birth profile which, in turn, is directly related to the loss of neutral atoms from the beam. This loss can be measured spectroscopically be the decrease in amplitude of spectral emissions from the beam as it penetrates the plasma. The spectra are complicated by the motional Stark effect which produces a manifold of nine bright peaks for each of the three beam energy components. A code has been written to analyze this kindmore » of data. In the first phase of this work, spectra from tokamak shots are fit with a Stark splitting and Doppler shift model that ties together the geometry of several spatial positions when they are fit simultaneously. In the second phase, a relative position-to-position intensity calibration will be applied to these results to obtain the spectral amplitudes from which beam atom loss can be estimated. This paper reports on the computer code for the first phase. Sample fits to real tokamak spectral data are shown.« less
  • A one-dimensional, time-dependent Lagrangian hydrodynamics code using a Godunov solution method has been multitasked for the Cray X-MP/48, the Intel iPSC hypercube, the Alliant FX series and the IBM RP3 computers. Actual multitasking results have been obtained for the Cray, Intel and Alliant computers and simulated results were obtained for the Cray and RP3 machines. The differences in the methods required to multitask on each of the machines is discussed. Results are presented for a sample problem involving a shock wave moving down a channel. Comparisons are made between theoretical speedups, predicted by Amdahl's law, and the actual speedups obtained.more » The problems of debugging on the different machines are also described.« less