skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

Abstract

These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical andmore » current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1376880
Report Number(s):
INL/EXT-17-42285
TRN: US1800558
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; RADIOACTIVE WASTE DISPOSAL; MINES; RADIOACTIVE WASTES; LITHOLOGY; UNDERGROUND; GROUND WATER; ENGINEERING; Deep Mines and Boreholes; Deep Underground Facilities; Deep Underground Repositories

Citation Formats

Tynan, Mark C., Russell, Glenn P., Perry, Frank V., Kelley, Richard E., and Champenois, Sean T. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes. United States: N. p., 2017. Web. doi:10.2172/1376880.
Tynan, Mark C., Russell, Glenn P., Perry, Frank V., Kelley, Richard E., & Champenois, Sean T. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes. United States. doi:10.2172/1376880.
Tynan, Mark C., Russell, Glenn P., Perry, Frank V., Kelley, Richard E., and Champenois, Sean T. Tue . "A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes". United States. doi:10.2172/1376880. https://www.osti.gov/servlets/purl/1376880.
@article{osti_1376880,
title = {A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes},
author = {Tynan, Mark C. and Russell, Glenn P. and Perry, Frank V. and Kelley, Richard E. and Champenois, Sean T.},
abstractNote = {These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.},
doi = {10.2172/1376880},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 13 00:00:00 EDT 2017},
month = {Tue Jun 13 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: